
(Second Draft) NIST Special Publication 800-90C 1

 2
 3

Recommendation for Random Bit 4

 Generator (RBG) Constructions 5

 6
 7
 8

Elaine Barker 9
John Kelsey 10

 11
 12
 13

 14
 15
 16

 17

 18

 19

C O M P U T E R S E C U R I T Y 20

 21

22

(Second Draft) NIST Special Publication 800-90C 23

 24

Recommendation for Random Bit 25

Generator (RBG) Constructions 26

 27
 28
 29

Elaine Barker 30
John Kelsey 31

Computer Security Division 32
Information Technology Laboratory 33

 34
 35
 36
 37
 38
 39
 40
 41
 42
 43

April 2016 44
 45
 46

 47
 48
 49
 50

U.S. Department of Commerce 51
Penny Pritzker, Secretary 52

 53
National Institute of Standards and Technology 54

Willie May, Under Secretary of Commerce for Standards and Technology and Director 55

Authority 56

This publication has been developed by NIST in accordance with its statutory responsibilities under 57
the Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3541 et seq., 58
Public Law (P.L.) 113-283. NIST is responsible for developing information security standards and 59
guidelines, including minimum requirements for federal information systems, but such standards and 60
guidelines shall not apply to national security systems without the express approval of appropriate 61
federal officials exercising policy authority over such systems. This guideline is consistent with the 62
requirements of the Office of Management and Budget (OMB) Circular A-130. 63

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory 64
and binding on Federal agencies by the Secretary of Commerce under statutory authority. Nor should 65
these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of 66
Commerce, Director of the OMB, or any other Federal official. This publication may be used by 67
nongovernmental organizations on a voluntary basis and is not subject to copyright in the United 68
States. Attribution would, however, be appreciated by NIST. 69

National Institute of Standards and Technology Special Publication 800-90C 70
Natl. Inst. Stand. Technol. Spec. Publ. 800-90C, 88 pages (April 2016) 71

CODEN: NSPUE2 72

 73

 74
 75
 76
 77
 78

 79
 80

 81

 82
 83

 84
Public comment period: April 13, 2016 through June 13, 2016 85

All comments are subject to release under the Freedom of Information Act (FOIA). 86
 87

National Institute of Standards and Technology 88
Attn: Computer Security Division, Information Technology Laboratory 89

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 90
Email: rbg_comments@nist.gov 91

Certain commercial entities, equipment, or materials may be identified in this document in order to describe
an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or
equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by federal agencies even before the completion of such companion
publications. Thus, until each publication is completed, current requirements, guidelines, and procedures,
where they exist, remain operative. For planning and transition purposes, federal agencies may wish to
closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide
feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
http://csrc.nist.gov/publications.

mailto:rbg_comments@nist.gov
http://csrc.nist.gov/publications

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

ii

Reports on Computer Systems Technology 92

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology 93
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the 94
Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, 95
proof of concept implementations, and technical analyses to advance the development and productive 96
use of information technology. ITL’s responsibilities include the development of management, 97
administrative, technical, and physical standards and guidelines for the cost-effective security and 98
privacy of other than national security-related information in Federal information systems. The 99
Special Publication 800-series reports on ITL’s research, guidelines, and outreach efforts in 100
information system security, and its collaborative activities with industry, government, and academic 101
organizations. 102

 Abstract 103
This Recommendation specifies constructions for the implementation of random bit 104
generators (RBGs). An RBG may be a deterministic random bit generator (DRBG) or a non-105
deterministic random bit generator (NRBG). The constructed RBGs consist of DRBG 106
mechanisms, as specified in NIST Special Publication (SP) 800-90A, and entropy sources, 107
as specified in SP 800-90B. 108

 109

Keywords 110
Construction; deterministic random bit generator (DRBG); entropy; entropy source; non-111
deterministic random bit generator (NRBG); random number generator; randomness source. 112

 113

 114

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

iii

Acknowledgements 115
The National Institute of Standards and Technology (NIST) gratefully acknowledges and 116
appreciates contributions by Mary Baish and Mike Boyle from the National Security Agency 117
for assistance in the development of this Recommendation. NIST also thanks the many 118
contributions by the public and private sectors. 119

120

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

iv

Table of Contents 121

1 Scope .. 1 122

2 Terms and Definitions ... 2 123

3 Symbols and Abbreviated Terms ... 8 124

4 General Discussion ... 9 125
4.1 RBG Security ... 9 126

4.2 Assumptions... 10 127

4.3 Constructions ... 10 128

4.4 Document Organization ... 11 129

5 Random Bit Generator Concepts ... 13 130
5.1 RBG Boundaries and Distributed RBGs ... 13 131

5.2 Full Entropy .. 15 132

5.3 Entropy Sources ... 15 133

5.3.1 Approved Entropy Sources .. 15 134

5.3.2 Live Entropy Source Availability .. 15 135

5.3.3 Using a Single Entropy Source .. 16 136

5.3.4 Using Multiple Entropy Sources .. 16 137

5.3.5 External Conditioning .. 16 138

5.4 Prediction Resistance ... 17 139

5.5 Deterministic Random Bit Generators (DRBGs) .. 17 140

5.5.1 General Discussion ... 17 141

5.5.2 Reseeding and Prediction Resistance ... 18 142

5.5.3 Security Strength Supported by a DRBG ... 18 143

5.6 Non-deterministic Random Bit Generators (NRBGs) ... 18 144

6 Randomness Sources ... 19 145

7 RBG Interfaces ... 22 146
7.1 General Pseudocode Conventions ... 22 147

7.2 DRBG Function Calls .. 22 148

7.2.1 Basic DRBG Functions .. 22 149

7.2.2 Additional DRBG Function ... 23 150

7.3 NRBG Function Calls .. 24 151

7.4 Entropy Source Calls ... 25 152

7.5 Conditioning Function Calls .. 25 153

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

v

7.5.1 Conditioning Functions Based on Approved Hash 154
Functions 25 155

7.5.2 Conditioning Functions Based on Approved Block-Cipher 156
Algorithms .. 26 157

8 DRBG Construction ... 27 158
8.1 DRBG Functionality Depending on Randomness Source 159

Availability .. 27 160

8.2 DRBG Instantiation ... 29 161

8.3 Generation of Output Using a DRBG .. 29 162

8.4 DRBG Reseeding ... 30 163

8.5 Sources of Other DRBG Inputs ... 31 164

9 NRBG Constructions ... 32 165
9.1 Entropy Source Access and General NRBG Operation 32 166

9.2 The DRBG Mechanism within the NRBG .. 33 167

9.3 XOR-NRBG Construction ... 33 168

9.3.1 Instantiation of the DRBG used by the XOR-NRBG 34 169

9.3.2 XOR-NRBG Generation .. 35 170

9.3.3 Direct DRBG Access ... 36 171

9.4 The Oversampling-NRBG Construction ... 36 172

9.4.1 Instantiation of the DRBG used by the Oversampling 173
NRBG 37 174

9.4.2 Oversampling-NRBG Generation .. 38 175

9.4.3 Direct DRBG Access ... 39 176

10 Additional Constructions .. 40 177
10.1 Constructions for Using a DRBG as a Randomness Source 40 178

10.1.1 The Requested Security Strength Does Not Exceed the 179
Strength of the Source DRBG .. 41 180

10.1.2 Accessing a Source DRBG with Prediction Resistance to 181
Obtain any Security Strength ... 42 182

10.2 Construction for Using an NRBG as a Randomness Source 43 183

10.3 Constructions for Using an Entropy Source as a Randomness 184
Sources .. 44 185

10.3.1 The Get_Entropy Call .. 44 186

10.3.1.1 Condensing Entropy Bits during Entropy 187
Collection ... 45 188

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

vi

10.3.1.2 Condensing After Entropy Collection 46 189

10.3.2 External Conditioning Functions ... 47 190

10.3.2.1 Using an External Conditioning Function 48 191

10.3.2.2 Keys Used for External Conditioning 48 192

10.3.3 Get_entropy_input Constructions for Accessing Entropy 193
Sources 49 194

10.3.3.1 Construction When a Conditioning Function is 195
not Used .. 49 196

10.3.3.2 Construction When a Vetted Conditioning 197
Function is Used and Full Entropy is Not 198
Required) .. 50 199

10.3.3.3 Construction When a Vetted Conditioning 200
Function is Used to Obtain Full Entropy 201
Bitstrings .. 51 202

10.4 General Construction Using a DRBG with Prediction Resistance to 203
Obtain Full-Entropy Output Upon Request .. 51 204

11 Combining RBGs ... 54 205
11.1 Discussion .. 54 206

11.2 Construction to Combine RBGs .. 54 207

11.2.1 Overview 54 208

11.2.2 Combined RBG Instantiation ... 55 209

11.2.3 Combined RBG Reseeding .. 57 210

11.2.4 Combined RBG Generation ... 58 211

12 Testing .. 60 212
12.1 Health Testing .. 60 213

12.1.1 Testing RBG Components ... 60 214

12.1.2 Known-Answer Testing for SP 800-90C Components 61 215

12.1.3 Handling Failure ... 61 216

12.2 Implementation Validation .. 61 217

Appendix A: Diagrams of Basic RBG Configurations 63 218
A.1 Example Using an XOR Construction ... 63 219

A.1.1 NRBG Instantiation .. 64 220

A.1.2 NRBG Generation .. 64 221

A.1.3 Direct DRBG Generation ... 65 222

A.1.4 DRBG Reseeding ... 66 223

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

vii

A.2 Example Using an Oversampling Construction ... 66 224

A.2.1 NRBG Instantiation .. 68 225

A.2.2 NRBG Generation .. 69 226

A.2.3 Direct DRBG Generation ... 69 227

A.2.4 Direct DRBG Reseeding .. 70 228

A.3 Example Using a DRBG without a Randomness Source 70 229

A.3.1 DRBG Instantiation .. 71 230

A.3.2 DRBG Generation .. 71 231

A.3.3 DRBG Reseeding ... 71 232

A.4 Example Using a DRBG with a Live Entropy Source ... 72 233

A.4.1 DRBG Instantiation .. 72 234

A.4.2 DRBG Generation .. 73 235

A.4.3 DRBG Reseeding ... 73 236

A.5 Example Using a Chain of DRBGs with a Live Entropy Source 74 237

A.5.1 DRBG Instantiation .. 74 238

A.5.1.1 Instantiation of the Initial DRBG in the Chain 239
(Source DRBG A) .. 74 240

A.5.1.2 Instantiation of DRBG B .. 75 241

A.5.1.3 Instantiation of DRBG C .. 75 242

A.5.2 DRBG Generation .. 76 243

A.5.2.1 Generate Requests to DRBG A from a 244
Subsequent DRBG in a Chain .. 76 245

A.5.2.2 Generate Requests to a DRBG by a Consuming 246
Application ... 76 247

A.5.3 DRBG Reseeding ... 77 248

A.5.3.1 Reseeding of DRBG A (the Initial DRBG of the 249
Chain) ... 77 250

A.5.3.2 Reseeding of a Subsequent DRBG in a Chain 77 251

Appendix B: References ... 79 252

 253
 254

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 1

1 Scope 255

Cryptography and security applications make extensive use of random bits. However, the 256
generation of random bits is problematic in many practical applications of cryptography. The 257
purpose of this Recommendation is to specify approved random bit generators (RBGs). By 258
matching the security requirements of the application using the random bits with the security 259
claims of the RBG generating those bits, an application can safely use the random bits produced 260
by an RBG conforming to this Recommendation. 261

NIST Special Publications (SPs) 800-90A and SP 800-90B have addressed the components of 262
RBGs: 263

• SP 800-90A, Random Number Generation Using Deterministic Random Bit Generator 264
Mechanisms, specifies several Deterministic Random Bit Generator (DRBG) 265
mechanisms containing approved cryptographic algorithms. 266

• SP 800-90B, Recommendation for the Entropy Sources Used for Ransom Bit 267
Generation, provides guidance for the development and validation of entropy sources − 268
mechanisms that generate randomness from a physical phenomenon. 269

SP 800-90C specifies the construction of approved RBGs using the DRBG mechanisms and 270
entropy sources from SP 800-90A and SP 800-90B, respectively. SP 800-90C is based on 271
American National Standard (ANS) X9.82, Part 4, and specifies constructions for an RBG, as 272
well as constructions for building components that are used within those RBG constructions. 273

Throughout this document (i.e., SP 800-90C), the term “this Recommendation” refers to the 274
aggregate of SP 800-90A, SP 800-90B and SP 800-90C. 275

The information in SP 800-90C is intended to be combined with the information in SP 800-90A 276
and SP 800-90B in order to: 277

• Construct an RBG with the required security properties, and 278

• Verify that an RBG has been constructed in compliance with this Recommendation. 279

The precise structure, design and development of an RBG are outside the scope of this 280
Recommendation. 281

282

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 2

2 Terms and Definitions 283

Approved FIPS-approved, NIST-Recommended and/or validated by the
Cryptographic Algorithm Validation Program (CAVP) or
Cryptographic Module Validation Program (CMVP).

Approved DRBG A DRBG implementation that uses an approved DRBG
mechanism, an approved entropy source, and a DRBG
construction that has been validated as conforming to SP 800-
90C.

Approved DRBG
mechanism

A DRBG mechanism that has been validated as conforming to
SP 800-90A.

Approved entropy source An entropy source that has been validated as complying with
SP 800-90B.

Approved NRBG An NRBG that uses an approved DRBG mechanism, an
approved entropy source, and an NRBG construction that has
been validated as conforming to SP 800-90C.

Approved RBG An approved DRBG or an approved NRBG.

Backtracking resistance A property whereby an attacker with knowledge of the state of
the RBG at some time(s) subsequent to time T (but incapable
of performing work that matches the claimed security strength
of the RBG) would be unable to distinguish between
observations of ideal random bitstrings and (previously
unseen) bitstrings that are output by the RBG at or prior to time
T. In particular, an RBG whose design allows the adversary to
"backtrack" from the initially compromised RBG state(s) to
obtain knowledge of prior RBG states and the corresponding
outputs (including the RBG state and output at time T) would
not provide backtracking resistance relative to time T.
(Contrast with Prediction resistance.)

Big-endian format The most significant bytes (the bytes containing the high order
or leftmost bits) are stored in the lowest address, with the
following bytes in sequentially higher addresses.

Bits of security See Security strength.

Bitstring An ordered sequence (string) of 0’s and 1’s.

Chain of RBGs (or
DRBGs)

A succession of RBGs where the randomness source for one
DRBG is another DRBG, NRBG or entropy source.

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 3

Conditioning function An optional component that is used to process a bitstring
containing entropy to reduce the bias and/or distribute the
entropy across the output of the conditioning function.

Construction A specific method of designing an RBG or some component of
an RBG to accomplish a stated goal.

Consuming application An application that uses the output from an approved random
bit generator.

Derivation function A function that is used to either derive internal state values, to
distribute entropy throughout a bitstring or to compress the
entropy in a bitstring into a shorter bitstring of a specified
length.

Deterministic Random
Bit Generator (DRBG)

An RBG that includes a DRBG mechanism and (at least
initially) has access to a randomness source. The DRBG
produces a sequence of bits from a secret initial value called a
seed, along with other possible inputs. A DRBG is often called
a Pseudorandom Bit (or Number) Generator. (Contrast with a
Non-deterministic random bit generator (NRBG)).

DRBG mechanism The portion of an RBG that includes the functions necessary to
instantiate and uninstantiate a DRBG, generate pseudorandom
bits, test the health of the DRBG mechanism, and (optionally)
reseed the DRBG. DRBG mechanisms are specified in SP 800-
90A.

Entropy A measure of the disorder, randomness or variability in a closed
system. Min-entropy is the measure used in this
Recommendation.

Entropy input An input bitstring that provides an assessed minimum amount
of unpredictability for a DRBG mechanism. (See Min-
entropy.)

Entropy source The combination of a noise source (e.g., thermal noise or hard
drive seek times), health tests, and an optional conditioning
component that produces the random bitstrings to be used by
an RBG.

Equivalent process A process that produces the same output as another process,
given the same input as the other process.

External conditioning The use of a conditioning function on the output of an entropy
source prior to its use by other components of an RBG. Note

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 4

that the entropy-source output may or may not have been
conditioned within the entropy source. See Internal
conditioning.

Fresh entropy A bitstring output from a randomness source for which there is
a negligible probability that it has been previously output by
the source and a negligible probability that the bitstring has
been previously used by the RBG.

Full-entropy output Output that cannot be distinguished from a sequence of bits of
the same length produced by an ideal random-number source
with a probability substantially higher than 1/2. (See Ideal
random sequence.)

Health testing Testing within an implementation immediately prior to or
during normal operation to determine that the implementation
continues to perform as implemented and as validated.

Ideal random bitstring See Ideal random sequence.

Ideal random sequence Each bit is unpredictable and unbiased, with a value that is
independent of the values of the other bits in the sequence.
Prior to the observation of the sequence, the value of each bit
is equally likely to be 0 or 1, and the probability that a particular
bit will have a particular value is unaffected by knowledge of
the values of any or all of the other bits. An ideal random
sequence of n bits contains n bits of entropy.

Independent entropy
sources

Entropy sources that have no overlap of their security
boundaries.

Independent randomness
sources

The probability of correctly predicting the output of any given
randomness source is unaffected by knowledge of the output of
any or all other randomness sources.

Instantiate The process of initializing a DRBG with sufficient entropy to
generate pseudorandom bits at the desired security strength.

Internal conditioning The use of a conditioning function to process the output of a
noise source within an entropy source prior to providing
entropy-source output.

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 5

Keying material The data (e.g., keys, certificates, and initialization vectors)
necessary to establish and maintain cryptographic keying
relationships.

Known-answer test A test that uses a fixed input/output pair to detect whether a
component was implemented correctly or to detect whether it
continues to operate correctly.

Live Entropy Source An approved entropy source (see SP 800-90B) that can
provide an RBG with bits having a specified amount of entropy
immediately upon request or within an acceptable amount of
time, as determined by the user or application relying upon that
RBG.

Min-entropy (in bits) The min-entropy (in bits) of a random variable X is the largest
value m having the property that each observation of X provides
at least m bits of information (i.e., the min-entropy of X is the
greatest lower bound for the information content of potential
observations of X). The min-entropy of a random variable is a
lower bound on its entropy. The precise formulation for min-
entropy is (log2 max pi) for a discrete distribution having
probabilities p1,...,pk. Min-entropy is often used as a worst-case
measure of the unpredictability of a random variable. (Also, see
Entropy.)

Narrowest internal width The maximum amount of information from the input that can
affect the output. For example, if f(x) = SHA-1(x) || 01, and x
consists of a string of 1000 binary bits, then the narrowest
internal width of f(x) is 160 bits (the SHA-1 output length), and
the output width of f(x) is 162 bits (the 160 bits from the SHA-
1 operation, concatenated by 01).

Nonce A time-varying value that has at most a negligible chance of
repeating.

Noise source The component of an entropy source that contains the non-
deterministic, entropy-producing activity.

Non-deterministic
Random Bit Generator
(NRBG)

An RBG that always has access to an entropy source and (when
working properly) produces output bitstrings that have full
entropy. Often called a True Random Number (or Bit)
Generator. (Contrast with a Deterministic random bit
generator (DRBG)).

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 6

Null string The empty bitstring.

Prediction resistance A property whereby an adversary with knowledge of the state
of the RBG at some time(s) prior to T (but incapable of
performing work that matches the claimed security strength of
the RBG) would be unable to distinguish between observations
of ideal random bitstrings and (previously unseen) bitstrings
output by the RBG at or subsequent to time T. In particular, an
RBG whose design allows the adversary to step forward from
the initially compromised RBG state(s) to obtain knowledge of
subsequent RBG states and the corresponding outputs
(including the RBG state and output at time T) would not
provide prediction resistance relative to time T. (Contrast with
Backtracking resistance.)

Random Bit Generator
(RBG)

A device or algorithm that is capable of producing a random
sequence of (what are effectively indistinguishable from)
statistically independent and unbiased bits. An RBG is
classified as either a DRBG or an NRBG.

Randomness source A component of an RBG that outputs bitstrings that can be used
as entropy input by a DRBG mechanism.

Reseed To acquire additional bits with sufficient entropy for the
desired security strength.

Reseed interval The period of time between instantiating or reseeding a DRBG
with one seed and reseeding that DRBG with another seed.

Secure channel A path for transferring data between two entities or components
that ensures confidentiality, integrity and replay protection, as
well as mutual authentication between the entities or
components. The secure channel may be provided using
approved cryptographic, physical, logical or procedural
methods, or a combination thereof. Somestimes called a trusted
channel.

Security boundary (of an
entropy source)

A conceptual boundary that is used to assess the amount of
entropy provided by the values output from an entropy source.
The entropy assessment is performed under the assumption that
any observer (including any adversary) is outside of that
boundary.

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 7

 284

285

Security strength A number associated with the amount of work (that is, the
number of basic operations of some sort) that is required to
“break” a cryptographic algorithm or system in some way. In
this Recommendation, the security strength is specified in bits
and is a specific value from the set {112, 128, 192, and 256}.
If the security strength associated with an algorithm or system
is S bits, then it is expected that (roughly) 2S basic operations
are required to break it.

Source RBG An RBG that is used directly as a randomness source.

Threat model A description of a set of security aspects that need to be
considered; a threat model can be defined by listing a set of
possible attacks, along with the probability of success and
potential harm from each attack.

Uninstantiate The process of removing a DRBG from use by zeroizing the
internal state of the DRBG.

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 8

3 Symbols and Abbreviated Terms 286

The following abbreviations are used in SP 800-90C. 287

Symbols and
Abbreviations

Meaning

AES Advanced Encryption Standard.

ANS American National Standard.

CAVP Cryptographic Algorithm Validation Program.

CTR_DRBG A DRBG specified in SP 800-90A that is based on block cipher
algorithms.

DRBG Deterministic Random Bit Generator.

FIPS Federal Information Processing Standard.

HMAC_DRBG A DRBG specified in SP 800-90A that is based on HMAC.

NIST National Institute of Standards and Technology.

NRBG Non-deterministic Random Bit Generator.

RBG Random Bit Generator.

RNG Random Number Generator.

SP Special Publication.

XOR-NRBG NRBG construction that uses a bitwise exclsing-or operation.

 288

The following symbols and function calls are used in SP 800-90C. 289

Symbol Meaning

leftmost (V, a) Selects the leftmost a bits of the bitstring V, i.e., the most significant a
bits of V.

min(a, b) The minimum of the two values a and b.
max(a, b) The maximum of the two values a and b.
s Security strength

X ⊕ Y Boolean bitwise exclusive-or (also bitwise addition modulo 2) of two
bitstrings X and Y of the same length.

X || Y Concatenation of two bitstrings X and Y.
+ Addition over non-negative integers.
0x A string of x zero bits.
× Multiplication over non-negative integers.

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 9

4 General Discussion 290

An RBG that conforms to this Recommendation produces random bits for a consuming 291
application. The security of the RBG depends on: 292

• A deterministic process (the RBGs currently specified in SP 800-90C include DRBG 293
mechanisms as discussed and specified in SP 800-90A) and 294

• A randomness source (e.g., an entropy source as specified in SP 800-90B or another 295
RBG as specified in this document). 296

There are two classes of RBGs specified in SP 800-90C: Non-deterministic Random Bit 297
Generators (NRBGs) and Deterministic Random Bit Generators (DRBGs). The choice of using 298
an NRBG or DRBG may be based on the following: 299

• NRBGs provide full-entropy output. See Section 5.2 for a discussion of full entropy, 300
and Sections 5.6 and 9 for discussions of NRBGs. The security strength that can be 301
provided by any output of an NRBG is equal to the length of that output1. 302

• DRBGs provide output that cannot be distinguished from an ideal random sequence 303
without an infeasible amount of computational effort. When designed and used as 304
specified in this Recommendation, DRBGs have a fixed (finite) security strength, which 305
is a measure of the amount of work required to defeat the security of the DRBG. See 306
Sections 5.5 and 8 for discussions of DRBGs. 307

DRBGs are divided into two types: those that can provide prediction resistance, and 308
those that cannot. See Section 5.4 for a discussion of prediction resistance. 309

4.1 RBG Security 310

Any failure of an RBG component could affect the security provided by the RBG. Any RBG 311
designed to comply with this Recommendation will function at the designed security strength 312
only if the following requirements are satisfied. 313

1. Entropy sources shall comply with SP 800-90B. 314

2. DRBG mechanisms shall comply with SP 800-90A. 315

3. Every DRBG shall be instantiated using an appropriate randomness source (see Section 316
6). 317

4. RBG boundaries shall include mechanisms that either detect or prevent access to RBG 318
components from outside the boundary with respect to a specific threat model (see 319
Section 5.1). 320

5. Bitstrings containing entropy shall only be used once. 321

1 Note that the security strength of a string greater than 256 bits in length will provide a security strength

greater than the highest security strength currently specified for Federal applcations (i.e., 256 bits).

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 10

4.2 Assumptions 322

The RBG constructions in SP 800-90C are based on the following assumptions: 323

1. Each output from an entropy source has a fixed length, ES_outlen (in bits). 324

2. Each output from an entropy source has a fixed amount of entropy, ES_entropy, that 325
was assessed during entropy-source implementation validation. 326

3. Entropy-source output can be collected from a single entropy source to form a bitstring 327
that is longer than a single output by concatenating the outputs. The entropy of the 328
resultant bitstring is the sum of the entropy from each entropy-source output. For 329
example, if three outputs from the same entropy source are concatenated, then the length 330
of the bitstring is 3 × ES_outlen bits, and the entropy for that bitstring is 3 × ES_entropy 331
bits. 332

4. Entropy-source output can be collected from multiple independent entropy sources. If 333
the entropy sources are independent (i.e., their security boundaries do not overlap), then 334
the outputs may be concatenated to form a single bitstring. The entropy in the resultant 335
bitstring is the sum of the entropy from each entropy-source output that contributed 336
entropy to the bitstring. For example, if the output from entropy sources A and B are 337
concatenated, the length of the resulting bitstring is ES_outlenA + ES_outlenB, and the 338
amount of entropy is ES_entropyA + ES_entropyB. 339

5. An entropy source is capable of providing a) an indication of success and the requested 340
amount of entropy, or b) an indication of a failure (see Section 12.1.3 for a discussion 341
of handling an entropy source failure). 342

6. The output of an entropy source (or the concatenated output of multiple entropy sources) 343
can be externally conditioned to reduce residual bias or to condense the entropy into a 344
shorter bitstring. 345

7. Under the right conditions, the output of an entropy source can be externally conditioned 346
to provide full-entropy outputs. This requires several conditions to be met, including a 347
requirement that the entropy-source output that is provided as input to the conditioning 348
function have at least twice the amount of entropy as the number of bits that are 349
produced as output from the conditioning function (see Section 5.3.5 for further 350
discussion). 351

8. The DRBG mechanisms specified in SP 800-90A meet their explicit security claims 352
(e.g., backtracking resistance, claimed security strength, etc.). 353

4.3 Constructions 354

SP 800-90C provides constructions for designing and implementing DRBGs and NRBGs from 355
components specified in SP 800-90A and SP 800-90B. A construction is a method of designing 356
an RBG or some component of an RBG to accomplish a specific goal. One or more of the 357
constructions provided herein shall be used in the design of an RBG that conforms to this 358
Recommendation. Each construction is intended to describe the behavior intended for the 359
process; a developer may implement the construction as described or may implement an 360

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 11

equivalent process. Two processes are equivalent if, when the same values are input to each 361
process, the same output is produced. 362

Constructions are specified in SP 800-90A for the instantiation, generation of (pseudo) random 363
output, reseeding and uninstantiation of a DRBG, and further details are discussed in Section 8. 364
During instantiation, a DRBG is seeded with the amount of entropy needed to provide output 365
at a given maximum security strength. Once instantiated, a DRBG can generate output at a 366
security strength that does not exceed the DRBG's instantiated security strength. Reseeding is 367
used to insert additional entropy into a DRBG. Uninstantiation is used to terminate a DRBG 368
instantiation. 369

Two constructions for NRBGs are provided in Section 9: 370

• Section 9.3 specifies constructions for the XOR-NRBG, in which the output of an 371
entropy source is exclusive-ORed with the output of a DRBG: 372

• Section 9.4 specifies constructions for the Oversampling-NRBG, which accesses an 373
entropy source from a DRBG in a way that provides the full-entropy output required 374
from an NRBG. 375

For each NRBG, constructions are provided to instantiate the NRBG (NRBG_Instantiate) and 376
request NRBG output (NRBG_Generate). 377

Additional constructions are used by the DRBG or NRBG to acquire entropy input from a 378
randomness source using a Get_entropy_input call. A randomness source can be either an 379
entropy source or another RBG. 380

• Section 10.1 provides Get_entropy_input constructions to use a DRBG as randomness 381
source; the consruction to be used depends on the security strength to be requested and 382
whether prediction resistance is required. 383

• Section 10.2 provides a Get_entropy_input construction for using an NRBG as a 384
randomness source. 385

• Section 10.3 provides several Get_entropy input constructions for accessing an 386
entropy source as the randomness source. Also included are constructions for 387
condensing entropy-source output when the output has sparse entropy. The output from 388
an entropy source may also be conditioned prior to use by an RBG; constructions for 389
vetted conditioning functions are provided in SP 800-90B. 390

A construction is also provided for obtaining full-entropy output from a DRBG when that 391
DRBG can provide prediction resistance and an entropy source is available (see Section 10.4). 392

The output of RBGs may also be combined, as long as at least one RBG is compliant with SP 393
800-90. Section 11 provides constructions for instantiating, reseeding and generating output 394
from multiple RBGs. 395

4.4 Document Organization 396

The remainder of SP 800-90C describes how to construct an RBG from the components 397
described in SP 800-90A and SP 800-90B. 398

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 12

Section 5 provides RBG concepts, such as RBG boundaries, distributed RBGs, full entropy, 399
live entropy sources, prediction resistance, and introductory discussions on DRBGs and 400
NRBGs. 401

Section 6 provides an overview of the randomness sources to be used by a DRBG. 402

Section 7 describes the conceptual interface calls used in SP 800-90C. 403

Sections 8 and 9 provide guidance for constructing DRBGs and NRBGs, respectively. 404

Section 10 provides constructions for implementing a DRBG’s Get_entropy_input call using 405
DRBGs, NRBGs and entropy sources as randomness sources. Section 10 also discusses the use 406
of approved functions for conditioning entropy-source output. 407

Section 11 provides guidance on combining RBGs. 408

Section 12 discusses testing, including both health testing and implementation-validation 409
testing. 410

Appendix A contains examples of RBG configurations. 411

Appendix B contains a list of references. 412

Additional material is addressed in American National Standard (ANS) X9.82, Part 4, including 413
expanded explanations and: 414

• A step-by step description for constructing an RBG, 415

• Obtaining entropy from entropy sources that are only available intermittently, and 416

• Security and implementation considerations. 417

418

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 13

5 Random Bit Generator Concepts 419

5.1 RBG Boundaries and Distributed RBGs 420

RBGs shall be implemented within FIPS 140-validated cryptographic modules (see Section 421
12). These cryptographic modules are defined with respect to cryptographic-module boundaries 422
(see [FIPS 140]). 423

An RBG shall exist within a conceptual RBG security boundary that is defined with respect to 424
one or more threat models, which include an assessment of the applicability of an attack and 425
the potential harm caused by the attack. The RBG boundary shall be designed to assist in the 426
mitigation of these threats, using either physical or logical mechanisms or both. 427

An RBG boundary shall contain all components required for the RBG. Data shall enter an RBG 428
only via the RBG’s public input interface(s) (if any) and shall exit only via its public output 429
interface(s). The primary components of an RBG are a randomness source (e.g., an entropy 430
source), a DRBG mechanism and health tests for the RBG. The boundaries of a DRBG 431
mechanism are discussed in SP 800-90A. The security boundary for an entropy source is 432
discussed in SP 800-90B. Both the entropy source and the DRBG mechanism contain their own 433
health tests within their respective boundaries. Note that the RBG boundary consists of at least 434
two conceptual sub-boundaries: a boundary for a DRBG mechanism, and a boundary for the 435
source of randomness (e.g., an entropy source). 436

An RBG may be implemented within a single cryptographic module, as shown in Figure 1. In 437
this case, the RBG boundary is either the same as the cryptographic module boundary or is 438
completely contained within that boundary. Within the RBG boundary are an entropy source 439
and a DRBG mechanism, each with its own (conceptual) sub-boundary. The entropy-source 440
sub-boundary includes a noise source, health tests and optionally, a conditioning function. The 441

Figure 1: RBG within a Single Cryptographic Module

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
GENERATOR (RBG) CONSTRUCTIONS

14

sub-boundary for the DRBG mechanism contains the chosen DRBG mechanism, an optional 442
conditioning function, memory for the internal state and health tests. The RBG boundary also 443
contains its own health tests. 444

Alternatively, an RBG may be distributed among multiple cryptographic modules; an example 445
is shown in Figure 2. In this case, each cryptographic module shall have an RBG sub-boundary 446
that contains the RBG component(s) within that module. The RBG component(s) within each 447
sub-boundary are protected by the cryptographic module boundary that contains those RBG 448
components. Test functions shall be provided within each sub-boundary to test the health of the 449
RBG component(s) within that sub-boundary. Communications between the sub-boundaries 450
(i.e., between the cryptographic modules) shall use reliable secure channels that provide 451
confidentiality, integrity and replay protection of the data transferred between the sub-452
boundaries, as well as mutual authentication between the entities or components. The boundary 453
for a distributed RBG encapsulates the contents of the cryptographic module boundaries and 454
RBG sub-boundaries, as well as the secure channels. The security provided by a distributed 455
RBG is no more than the security provided by the secure channel(s) and the cryptographic 456
modules. 457

In the example in Figure 2, the entropy source is contained within a single RBG sub-boundary 458
within one cryptographic module (indicated by the dotted-line box), while the DRBG 459
mechanism is distributed across other sub-boundaries within other cryptographic modules (see 460
SP 800-90A for further discussion of a distributed DRBG mechanism boundary). Secure 461
channels are provided between the cryptographic modules to transport requests and responses 462
between the RBG sub-boundaries. 463

Figure 2: Distributed RBG

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 15

When an RBG uses cryptographic primitives (e.g., an approved hash function), other 464
applications within the cryptographic module containing that primitive may use the same 465
implementation of the primitive, as long as the RBG’s output and internal state are not modified 466
or revealed by this use. 467

5.2 Full Entropy 468

Each bit of a bitstring with full entropy has a uniform distribution and is independent of every 469
other bit of that bitstring. Simplistically, this means that a bitstring has full entropy if every bit 470
of the bitstring has one bit of entropy; the amount of entropy in the bitstring is equal to its length. 471

For the purposes of this Recommendation, an n-bit string is said to have full entropy if the string 472
is the result of an approved process whereby the entropy in the input to that process has at least 473
2n bits of entropy (see [ILL89] and Section 4.2). Full-entropy output could be provided by an 474
entropy source for use in an RBG (see SP 800-90B), by the output of an external conditioning 475
function using the output of an entropy source (see Section 10.3), by a properly constructed 476
DRBG (see Sections 10.1.2 and 10.4) or by an NRBG (see Sections 5.6 and 9). 477

5.3 Entropy Sources 478

5.3.1 Approved Entropy Sources 479

SP 800-90B discusses entropy sources. An entropy source is considered approved if it has been 480
successfully validated as conforming to SP 800-90B. 481

The output of an approved entropy source consists of a status indication, and if the entropy 482
source is operating correctly and entropy is available, a bitstring containing entropy is also 483
provided. Otherwise, an error indication is returned as the status. 484

SP 800-90B discusses the handling of errors during the health testing of an entropy source. If 485
the entropy source is unable to resolve the error, an error status indicator is returned to the 486
calling application (e.g., the RBG routine calling the entropy source). 487

Each output from a properly functioning entropy source consists of a bitstring that has a fixed 488
length, ES_outlen. This document requires the use of an approved entropy source with an 489
assessed amount of entropy (ES_entropy) per ES_outlen-bit output that has been determined 490
during implementation validation (see Section 12). 491

An interface to the entropy source is discussed in Section 7.4, and constructions for accessing 492
an entropy source are provided in Section 10.3. 493

5.3.2 Live Entropy Source Availability 494

Three scenarios for the availability of an entropy source are considered in this document: 495

1) An entropy source is not available to fulfill requests, 496

2) An entropy source is available, but entropy cannot be immediately provided (e.g., because 497
entropy is currently unavailable or collecting entropy is slow), or 498

3) An entropy source is available and entropy is immediately (or almost immediately) 499
provided. 500

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 16

In cases 2 and 3, the entropy source is considered to be a Live Entropy Source: an approved 501
entropy source that can provide the requested amount of entropy immediately or within an 502
acceptable amount of time, as determined by the user or application requesting random bits 503
from an RBG. Note that there is a distinction between the availability of an entropy source and 504
the availability of entropy bits from an available entropy source. Also, note that entropy sources 505
could only be available intermittently or during DRBG instantiation; entropy sources are 506
considered to be Live only when actually available during requests for (pseudo) random bits. 507

A Live Entropy Source provides fresh entropy, which is required for an RBG to instantiate the 508
initial DRBG in a DRBG chain or to provide prediction resistance. See Section 6 for a 509
discussion of DRBG chains, and Sections 5.4 and 5.5.2 for discussions of prediction resistance. 510

A Live Entropy Source can be used to support any security strength using an appropriate 511
construction as specified in this document. An NRBG always has a Live Entropy Source, so 512
can support any security strength. However, this may not be the case for a DRBG (see Section 513
5.5). 514

A Live Entropy Source could be directly accessible (e.g., a DRBG has a Live Entropy Source 515
that is always available), or it could be indirectly accessible via an RBG that has a Live Entropy 516
Source (e.g., a DRBG can obtain entropy bits from an NRBG, which always has an available 517
entropy source, or from another DRBG that has direct access to an entropy source). 518

5.3.3 Using a Single Entropy Source 519

A single entropy source may provide the required amount of entropy as a single bitstring, or 520
multiple requests may be used to obtain the required amount of entropy. When multiple requests 521
are needed, the entropy-source output can be concatenated, and the entropy in the resulting 522
bitstring is the sum of the entropy contained in each component bitstring. See item 3 of Section 523
4.2 for additional information. 524

5.3.4 Using Multiple Entropy Sources 525

Entropy bitstrings may be obtained from multiple entropy sources. When multiple entropy 526
sources are used, they shall be independent of each other. For one entropy source to be 527
independent of another entropy source, the security boundaries of the entropy sources shall not 528
overlap; the security boundary for an entropy source is declared during entropy-source 529
validation. 530

When entropy bits are obtained from multiple independent entropy sources, the output bitstrings 531
can be concatenated, and the entropy in the resulting bitstring is the sum of the entropy 532
contained in each component bitstring. See item 4 of Section 4.2 for additional information. 533

5.3.5 External Conditioning 534

Conditioning may have been performed by an entropy source prior to providing output, but 535
conditioning within the entropy source itself (i.e., internal conditioning) is not required by SP 536
800-90B. Whether or not entropy-source output was conditioned within the entropy source, the 537
output of an entropy source could be conditioned prior to subsequent use by the RBG. Reasons 538
for performing external conditioning might be to: 539

• Reduce the bias in the entropy-source output and distribute entropy across a bitstring, 540

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 17

• Reduce the length of the bitstring and compress the entropy into a smaller bitstring, 541
and/or 542

• Ensure the availability of full-entropy bits. 543

Since this conditioning is done external to the entropy source, the entropy-source output is said 544
to be externally conditioned. 545

An external conditioning function includes one or more iterations of a cryptographic algorithm 546
that has been vetted for conditioning; such conditioning functions are listed or referenced in [SP 547
800-90B]. Section 10.3.2 provides further discussion on the use of external conditioning 548
functions. 549

5.4 Prediction Resistance 550

An RBG may support prediction resistance, which means that a compromise of the internal state 551
in the past or present will not compromise future RBG outputs. Prediction resistance may be 552
provided automatically for all generation requests or may be provided on-demand, and requires 553
the availability of a properly functioning Live Entropy Source to provide fresh entropy bits; if 554
the entropy source fails, prediction resistance cannot be provided. The Live Entropy Source 555
may be directly or indirectly accessible (see Section 5.3.2). 556

Properly functioning NRBGs compliant with SP 800-90C provide prediction resistance for each 557
generation request because they always access a Live Entropy Source. Each call to the NRBG 558
results in fresh entropy bits (see Section 5.6). 559

DRBGs with access to a Live Entropy Source can provide prediction resistance when requested 560
to do so. Prediction resistance is accomplished by reseeding the DRBG using a randomness 561
source that has access to a Live Entropy Source (e.g., an NRBG or a DRBG with access to a 562
Live Entropy Source) and including a request for prediction resistance in the reseed request. 563

For a more complete discussion of prediction resistance, see SP 800-90A. 564

5.5 Deterministic Random Bit Generators (DRBGs) 565

5.5.1 General Discussion 566

An RBG could be a DRBG. A DRBG consists of a DRBG mechanism (i.e., an algorithm) and 567
a randomness source; note that the difference between a DRBG and a DRBG mechanism is that 568
the DRBG includes a randomness source, while the DRBG mechanism does not. A randomness 569
source may be an entropy source that conforms to SP 800-90B, or an RBG that is ultimately 570
based on an entropy source that conforms to SP 800-90B. Section 6 of this document (i.e., SP 571
800-90C) discusses randomness sources. Section 8 discusses the construction of a DRBG from 572
a randomness source and a DRBG mechanism specified in SP 800-90A. 573

A DRBG shall be instantiated before it can provide pseudorandom bits using a randomness 574
source that is available at that time. However, the randomness source may or may not be 575
available after instantiation. 576

When the randomness source is a DRBG, this source DRBG shall not be the same DRBG 577
instantiation as the DRBG being instantitated (i.e., the target DRBG) (see SP 800-90A). 578

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 18

5.5.2 Reseeding and Prediction Resistance 579

Applications using DRBGs may require that the DRBG be capable of periodically reseeding 580
itself in order to thwart a possible compromise of the DRBG or to recover from an actual 581
compromise. 582

The reseeding of a (target) DRBG requires the availability of a randomness source, either: 583

• An entropy source, 584

• A DRBG with or without access to an entropy source, or 585

• An NRBG (which has an entropy source). 586

If prediction resistance or guaranteed recovery from a compromise of the DRBG's internal state 587
is desired, fresh entropy is needed, which requires the availability of a Live Entropy Source, 588
i.e., in these cases, the randomness source for the (target) DRBG shall be either: 589

1. An entropy source, 590

2. An NRBG, or 591

3. A DRBG with access to a Live Entropy Source. 592

5.5.3 Security Strength Supported by a DRBG 593

A DRBG directly or indirectly supports a given security strength s if either: 594

• The DRBG has been instantiated at a security strength that is equal to or greater than s, 595
or 596

• The DRBG has access to a Live Entropy Source (i.e., the DRBG’s randomness source 597
is a Live Entropy Source, an NRBG or one or more other DRBGs, one of which has 598
access to a Live Entropy Source; see Section 6). 599

5.6 Non-deterministic Random Bit Generators (NRBGs) 600

An RBG could be an NRBG. An approved NRBG provides output bits that are 601
indistinguishable from an ideal random sequence to any observer; that is, an NRBG provides 602
full-entropy output − a request for n bits of output will result in a bitstring of n bits, with each 603
bit providing one bit of entropy. See Section 9 for further discussions about NRBGs. 604

An NRBG is designed with access to a Live Entropy Source. Because an entropy source is 605
always available, a properly functioning NRBG always provides fresh entropy and prediction 606
resistance. 607

In addition to a Live Entropy Source, the NRBGs specified in this Recommendation include an 608
approved DRBG mechanism. The NRBGs herein are constructed so that if the entropy source 609
fails without detection, the security provided by the NRBG is reduced to the security strength 610
of the approved DRBG used in the NRBG construction. This assumes that the DRBG has been 611
properly instantiated with sufficient entropy to support that security strength. 612

613

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 19

6 Randomness Sources 614

In order to construct a DRBG or an NRBG that contains a DRBG mechanism, the RBG designer 615
shall construct a source of secret, random or pseudorandom input for the DRBG mechanism, 616
i.e., a randomness source. A randomness source is used by a DRBG mechanism to construct 617
seed material for instantiation. It may also be used to construct seed material for reseeding 618
automatically at the end of the reseed interval of the DRBG mechanism or for reseeding on 619
demand, including fulfilling requests for prediction resistance. 620

There are two primary components that may be used to construct a randomness source: 621
approved RBGs and approved entropy sources. A randomness source can, in fact, be a nested 622
chain of RBGs (see Figure 3). In this figure, the inner RBGs in the “nest” (i.e., RBG 1 through 623
RBG n-1) are considered to be higher-level RBGs than the target RBG (i.e., RBG n), and RBG 624
1 is the innermost or initial RBG in the chain. The entropy source used by RBG 1 is required 625
for its instantiation, but may not be available after the instantiation of RBG 1. 626

To avoid possible confusion, a DRBG mechanism using a randomness source that will be 627
accessed by a consuming application is called the target DRBG mechanism; a randomness 628
source for the target DRBG that is an RBG, DRBG or NRBG is referred to as the source RBG, 629
source DRBG or source NRBG, respectively. Note that the source RBG could be either a DRBG 630
or an NRBG. A source DRBG may be implemented using the same DRBG design as the target 631
DRBG (e.g., both the target and source DRBGs may be implemented as specified for an 632
HMAC_DRBG using the same hash function), or may be implemented using different DRBG 633
designs. When the target and source DRBG have the same design, they shall have different 634
instantiations. 635

The target DRBG mechanism invokes a Get_entropy_input call, which includes the 636
appropriate call for the selected randomness source (e.g., the Get_entropy_input call includes 637
a Generate_function call if a DRBG is used as the randomness source and pseudorandom bits 638
are requested). See Section 7 and Section 10 for further specifics about the Get_entropy_input 639
call. 640

Figure 3: RBG Chain

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 20

The requirements for the randomness source (s) are: 641

1. During instantiation, the randomness source(s) shall support at least the security 642
strength that is intended for the target DRBG mechanism that is using it. Note that the 643
maximum security strength that a target DRBG can support is limited by its design2. 644

a. A source RBG (i.e., a DRBG or NRBG) can be used to support the security 645
strength to be provided by the constructed target DRBG under the following 646
conditions: 647

• If the source RBG is either 1) a DRBG with access to a Live Entropy Source 648
or 2) an NRBG, then the target DRBG can be instantiated at any security 649
strength when accessed as specified in this document. For example, if the 650
desired security strength for the target DRBG is 256 bits, then a DRBG with 651
a security strength of 128 bits can be used as the randomness source when it 652
has access to a Live Entropy Source, and the appropriate constructions are 653
used. 654

• If the source RBG is a DRBG without a Live Entropy Source, then the target 655
DRBG can be instantiated at a security strength that is less than or equal to 656
the security strength of the source DRBG. For example, if the desired 657
security strength for the target DRBG is 192 bits, then the (source) DRBG 658
must have been instantiated at a security strength of at least 192 bits. 659

b. An approved entropy source supports any desired security strength when used 660
as a randomness source. 661

2. If the target DRBG is intended to allow reseeding, either on-demand or at the end of the 662
DRBG’s reseed interval, then the randomness source shall be available when the 663
reseeding process is requested. 664

a. A source DRBG with access to a Live Entropy Source or an NRBG can be used 665
to reseed the target DRBG at any security strength when accessed as specified 666
in this document. 667

b. A source DRBG without a Live Entropy Source can be used to reseed the target 668
DRBG at a security strength that is less than or equal to the security strength of 669
the source DRBG. 670

c. An approved entropy source can be used to reseed the target DRBG at any 671
security strength. 672

3. If the target DRBG is intended to support requests for prediction resistance, then a Live 673
Entropy Source shall be available in order to fulfill those requests. The randomness 674
source for the target DRBG shall be either a source DRBG with access to a Live Entropy 675
Source, an NRBG or an approved entropy source. 676

2 For example, a DRBG using SHA-1 as a primitive can support security strengths of 112 and 128 bits, but

cannot support security strengths of 192 and 256 bits.

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 21

4. If the target DRBG is not required to be reseeded or to support prediction resistance, 677
then the randomness source is not required to be available after instantiation. 678

5. If the randomness source is not within the same sub-boundary as the target DRBG, then 679
a secure channel shall be used to transfer data from the randomness source to the target 680
DRBG (see Section 5.1). 681

6. If the CTR_DRBG is used as the target DRBG mechanism (see SP 800-90A), and a 682
derivation function will not be used, then the randomness source used by the 683
CTR_DRBG shall be: 684

 a) An NRBG, 685

 b) A DRBG with a Live Entropy Source that has been constructed to provide full-686
entropy output (see Section 10.4), 687

c) An entropy source that has been assessed as providing full-entropy output, or 688

d) An entropy source and external conditioning function that are used together to 689
provide full-entropy output (see Section 10.3.3.3). 690

691

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 22

7 RBG Interfaces 692

Functions used within this document for accessing DRBGs, NRBGs and entropy sources are 693
provided below. Each function uses one or more of the input parameters listed for that function 694
during its execution, and shall return a status code that should be checked by the consuming 695
application. 696

If the status code indicates a success, then additional information may also be returned, such as 697
a state handle from an instantiate call or the bits that were requested to be generated during a 698
generate call. 699

If the status code indicates a failure of an RBG component, then see Section 12.1.3 for error-700
handling guidance. 701

The status code may also indicate other conditions, but this is not required. Examples include: 702

• The lack of a Live Entropy Source when prediction resistance is requested (an 703
appropriate response would be to notify the consuming application of the problem and 704
deny the request), and 705

• The current unavailability of entropy bits from an available entropy source (an 706
appropriate response might be to re-issue the request at a later time). 707

Note that if the status code does not indicate a success, a null string shall be returned with the 708
status code if information other than the status code could be returned. 709

7.1 General Pseudocode Conventions 710

All algorithms in SP 800-90C are described in pseudocode that is intended to explain the 711
algorithm’s function. These pseudocode conventions are not intended to constrain real-world 712
implementations, but to provide a consistent notation to describe the constructions herein. By 713
convention, unless otherwise specified, integers are 32-bit unsigned, and when used as 714
bitstrings, they are represented in big-endian format. 715

7.2 DRBG Function Calls 716

7.2.1 Basic DRBG Functions 717

A DRBG contains a DRBG mechanism and a randomness source. See SP 800-90A for more 718
information about DRBG mechanisms, and Section 6 for randomness sources. Note that, in 719
some situations, not all input parameters for a function are required, and not all output 720
information is returned. The DRBG supports the following interfaces: 721

1. (status, state_handle) = 722
Instantiate_function(requested_instantiation_security_strength, 723
prediction_resistance_flag, personalization_string). 724

The Instantiate_function is used to instantiate a DRBG at a requested security strength 725
using a randomness source and an optional personalization string; the function call could 726
also indicate whether the DRBG will need to provide prediction resistance. The 727
randomness source is accessed by the Instantiate_function using a 728
Get_entropy_input call (see item 4 below). If the returned status code for the 729

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 23

Instantiate_function indicates a success, a state handle will be returned to indicate the 730
particular DRBG instance; the state handle will be used in subsequent calls to the DRBG 731
(e.g., during a Generate_function call). If the status code indicates an error, a Null state 732
handle will be returned. 733

2. (status, returned_bits) = Generate_function(state_handle, 734
requested_number_of_bits, requested_security_strength, 735
prediction_resistance_request, additional_input). 736

The Generate_function requests that a DRBG generate a specified number of bits. The 737
request indicates the DRBG instance to be used (using the state handle returned by an 738
Instantiate_function call), the number of bits to be returned, the security strength that 739
the DRBG must support and whether or not prediction resistance is to be invoked during 740
this execution of the Generate_function. Optional additional input may also be 741
incorporated into the function call. If the returned status code indicates a success, a 742
bitstring containing the newly generated bits is returned. If the status code indicates an 743
error, the returned_bits will consist of a Null string. 744

3. status = Reseed_function(state_handle, prediction_resistance_request, 745
additional_input). 746

The Reseed_function is optional in a DRBG. When present, it is used to acquire new 747
entropy input for the DRBG instance indicated by the state handle. The call may indicate 748
a requirement for the use of a Live Entropy Source during the reseeding process (via the 749
prediction_resistance_request parameter), and optional additional input may be 750
incorporated into the process. The Reseed_function obtains the entropy input from a 751
randomness source using a Get_entropy_input call (see item 4). An indication of the 752
status is returned. 753

4. (status, entropy_input) = Get_entropy_input(min_entropy, min_length, max_length, 754
prediction_resistance_request). 755

The Get_entropy_input call is performed within the instantiate and reseed functions 756
(items 1 and 3 above) to access a randomness source. The specifics of the call depend 757
on the randomness source to be used; constructions for the Get_entropy_input function 758
are provided in Section 10. In general, the call indicates (at a minimum) the minimum 759
amount of entropy to be returned. The call may also include the minimum and/or 760
maximum length of the bitstring to be returned, as well as a request that prediction 761
resistance be provided (i.e., a Live Entropy Source is required). If the returned status 762
code indicates success, a bitstring containing the requested entropy input is also 763
returned. If the status code indicates an error, the entropy_input will be a Null string. 764

Note that the use of the Uninstantiate_function specified in SP 800-90A is not explicitly 765
discussed in SP 800-90C. 766

7.2.2 Additional DRBG Function 767

An additional DRBG function is included in this document in order to allow a DRBG to provide 768
full-entropy output upon request. If a DRBG has access to a Live Entropy Source, it can provide 769
prediction resistance and full-entropy output using the construction in Section 10.4. The 770
following function call is provided for this purpose: 771

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 24

(status, returned_bits) = General_DRBG_Generate(state_handle, 772
requested_number_of_bits, security_strength, full_entropy_request, 773
prediction_resistance_request, additional input). 774

This function call is especially useful for the case where the target DRBG's randomness source 775
does not provide full-entropy itself (i.e., the randomness source is a DRBG with access to a 776
Live Entropy Source, or an entropy source without an external conditioning function to 777
condition the entropy-source output to provide full entropy). For randomness sources that 778
inherently provide full entropy (e.g., an NRBG or an entropy source that provides full-entropy 779
output), the DRBG_Generate function call in Section 10.2.1 may be more efficient. 780

7.3 NRBG Function Calls 781

A non-deterministic random bit generator (NRBG) supports the following interfaces. The 782
definition of the parameters used as input and output are the same as those used for the DRBG 783
function calls in Section 7.2. 784

1. (status, state_handle) = NRBG_ Instantiate(prediction_resistance_flag, 785
personalization_string). 786

The NRBG_ Instantiate function is used to instantiate the DRBG mechanism within 787
the NRBG; this will result in a call to the Instantiate_function provided in Section 7.2 788
and SP 800-90A. A prediction-resistance capability may be requested for the DRBG 789
instantiation, and a personalization string may be provided for use during the DRBG 790
instantiation process. If the returned status code indicates success, a state handle will be 791
returned to indicate the particular DRBG instance that is to be used by the NRBG; the 792
state handle will be used in subsequent calls to that DRBG (e.g., during an 793
NRBG_Generate call). If the status code indicates an error, a Null state handle will be 794
returned. 795

2. (status, returned_bits) = NRBG_Generate(state_handle, requested_number_of_bits, 796
additional_input). 797

The NRBG_Generate function is used to request full-entropy output from an NRBG; 798
this function results in calls to the entropy source and to the DRBG mechanism used by 799
that NRBG. This call accesses the DRBG mechanism using the Generate_function call 800
provided in Section 7.2 and SP 800-90A, and the input parameters in the 801
NRBG_Generate call are used when calling that DRBG. If the returned status code 802
indicates success, a bitstring containing the newly generated bits is returned. If the status 803
code indicates an error, the returned_bits will be a Null string. 804

3. (status, returned_bits) = NRBG_DRBG_Generate(state_handle, 805
requested_number_of_bits, requested_security_strength, 806
prediction_resistance_request, additional_input). 807

An NRBG_DRBG_Generate function may optionally be used to directly access the 808
DRBG instantiation associated with the NRBG to request the generation of a specified 809
number of bits. This function calls the DRBG mechanism using the Generate_function 810
call provided in Section 7.2 and SP 800-90A, optionally requesting prediction resistance 811
from the DRBG and using the input parameters provided to the 812

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 25

NRBG_DRBG_Generate call. If the returned status code indicates success, a bitstring 813
containing the requested bits is returned. 814

7.4 Entropy Source Calls 815

An entropy source, as discussed in SP 800-90B, is a mechanism for producing bitstrings that 816
cannot be completely predicted, and whose unpredictability can be quantified in terms of min-817
entropy. This Recommendation allows the use of either a single entropy source or multiple 818
independent entropy sources. The interface routine to an entropy source is accomplished using 819
the following call. 820

(status, entropy_bitstring) = Get_Entropy(requested_entropy, max_length), 821

where max_length is an optional parameter that indicates the maximum length allowed for 822
entropy_bitstring. 823

The Get_Entropy interface function is responsible for obtaining entropy from the entropy 824
source(s) in whatever manner is required (e.g., by polling the entropy source(s) or extracting 825
bits containing entropy from a pool of bits collected as the result of system interrupts). An RBG 826
implementer is responsible for the particulars of the actual interaction with the entropy source(s) 827
in the function, but some guidance is provided in Section 10.3.1. 828

The Get_Entropy function is invoked from one of the Get_entropy_input constructions 829
specified in Section 10.3.3. 830

7.5 Conditioning Function Calls 831
The output of an entropy source may be externally conditioned using vetted methods prior to 832
subsequent use by the RBG. These methods are based on the use of approved hash functions 833
or approved block-cipher algorithms. The use of conditioning is discussed in Section 10.3.2. 834

For the hash functions or block-cipher algorithms, the conditioning function calls include a 835
string of bits (entropy_bitstring) obtained from one or more calls to the entropy source. 836

Some of the algorithms also include a Key as input; this key is also discussed in Section 10.3.2.1. 837
The key shall be available prior to invoking the algorithm. 838

7.5.1 Conditioning Functions Based on Approved Hash Functions 839

Conditioning functions may be based on the use of approved hash functions and may include 840
optional additional data (denoted as A) to be hashed with the entropy bits (denoted as 841
entropy_string). In this case, the conditioning function includes one of the following calls: 842

1. Using an approved hash function directly: The conditioning function makes the 843
following call to the hash function: 844

output_string = Hash(entropy_string || A). 845

The length of the output_string is equal to the length of the output block of the selected 846
hash function. 847

2. Using HMAC with an approved hash function: The conditioning function makes the 848
following call to HMAC: 849

output_string = HMAC(Key, entropy_string || A). 850

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 26

The length of the output_string is equal to the length of the output block of the selected 851
hash function. 852

3. Using an approved hash function in the hash-based derivation function specified in SP 853
800-90A: The conditioning function makes the following call: 854

(status, requested_bits) = Hash_df(entropy_string || A, no_of_bits_to_return). 855

The derivation function operates on the provided input string (entropy_string || A) and, 856
if no error is indicated by the returned status, a bitstring of the requested number of bits 857
is returned. 858

7.5.2 Conditioning Functions Based on Approved Block-Cipher Algorithms 859

Conditioning functions may be based on the use of approved block-cipher algorithms and may 860
include optional additional data (denoted as A) to be concatenated to the entropy bits (denoted 861
as entropy_string). In this case, the conditioning function includes one of the following calls: 862

1. Using CMAC with an approved block-cipher algorithm as specified in SP 800-38B. 863
The conditioning function makes the following call: 864

output_string = CMAC(Key, entropy_string || A). 865

The length of the output_string is equal to the length of the output block of the selected 866
block-cipher algorithm. Note that a key shall be available prior to invoking CMAC. 867

2. Using CBC-MAC with an approved block-cipher algorithm as specified in Appendix 868
C. The conditioning function makes the following call: 869

output_string = CBC-MAC(Key, entropy_string || A). 870

The length of the output_string is equal to the length of the output block of the selected 871
block-cipher algorithm. The length of entropy_string shall be an integer multiple of the 872
block length, and all uses of CBC-MAC in an RBG shall have the same fixed length for 873
enropy_bitstring. The key shall be available prior to invoking CMAC. 874

3. Using an approved block-cipher algorithm in a derivation function as defined in SP 875
800-90A. The conditioning function makes the following call: 876

(status, requested_bits) = Block_Cipher_df(entropy_string || A, 877
no_of_bits_to_return). 878

The derivation function operates on the provided input string (entropy_string || A) and, 879
if no error is indicated by the returned status, a bitstring of the requested number of bits 880
is returned. If an error is indicated by the status code, then requested_bits is the Null 881
string. The input string shall be a multiple of eight bits in length, and be no longer than 882
512 bits in length. Note that the key for this algorithm is defined within the 883
Block_Cipher_df specification. 884

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 27

8 DRBG Construction 885

A DRBG is constructed from a DRBG mechanism and a randomness source. DRBG 886
mechanisms are specified in SP 800-90A, and examples of DRBGs are provided in Appendix 887
A. 888

As shown in Figure 4, the randomness source for a target DRBG could be an approved DRBG, 889
an approved NRBG or an approved entropy source. Note that the function calls and returned 890
results are depicted. 891

A source DRBG could be a chain of approved DRBGs (see Section 6), consisting of a target 892
DRBG and one or more higher-level DRBGs that serve as the source for the target DRBG. 893
Section 10 of this document provides constructions to access the appropriate randomness source 894
from the DRBG’s Get_entropy_input call. 895

8.1 DRBG Functionality Depending on Randomness Source Availability 896

A randomness source shall be available for DRBG instantiation, but need not be available 897
thereafter; however, if reseeding is to be performed, then a randomness source shall be available 898
for the reseeding operation. The randomness source is either an entropy source, an NRBG or a 899
source DRBG (with or without access to a Live Entropy Source). If the reseeding operation is 900
used to provide prediction resistance, fresh entropy is required, and a source DRBG used for 901
reseeding shall have access to a Live Entropy Source. Table 1 summarizes the availability of 902
randomness sources and entropy, and indicates the possible DRBG functionality. 903

 904

Figure 4: Randomness Sources for a DRBG

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 28

Table 1: DRBG Functionality

 905

When a source DRBG is used as a randomness source, its use for instantiating and reseeding a 906
target DRBG is subject to the restrictions discussed in Section 6. 907

If prediction resistance is requested, and a Live Entropy Source is not available (e.g., the entropy 908
source indicates that it has failed or entropy output is not currently available), the consuming 909
application shall be notified, and output other than the status shall not be returned for that 910
request. 911

When a source DRBG is used to instantiate or reseed a target DRBG, the target and source 912
DRBG instantiations shall not be the same. 913

Sections 8.2 - 8.4 further address the differences provided by the use or non-use of Live Entropy 914
Sources. 915

Randomness

Source
Availability

Live
Entropy
Source?

Comments

1 Whenever
required Yes

A Live Entropy Source is always available; the randomness source
is an entropy source, an NRBG, or a source DRBG with access to a
Live Entropy Source. A target DRBG can be instantiated, generate
bits, be reseeded, and provide prediction resistance.

2 Whenever
required No

A randomness source is always available; in this case, the
randomness source is a source DRBG with no access to a Live
Entropy Source. A target DRBG can be instantiated, generate bits,
and be reseeded, but cannot provide prediction resistance.

3
During

instantiation
only

No

A randomness source is only available for instantiation; the
randomness source is an entropy source, an NRBG, or a source
DRBG with or without access to a Live Entropy Source. A target
DRBG can be instantiated and generate bits, but cannot be reseeded
or provide prediction resistance.

4 Intermittently Yes

A Live Entropy Source is available only intermittently; the
randomness source is an entropy source, an NRBG, or a source
DRBG with access to a Live Entropy Source. A target DRBG can be
instantiated and generate bits, but reseeding, including providing
prediction resistance, can only be done when the randomness source
is available.

5 Intermittently No

A randomness source is available intermittently; the randomness
source is a source DRBG with no access to a Live Entropy Source.
The target DRBG can be instantiated and generate bits, but can be
reseeded only when the randomness source is available. Prediction
resistance cannot be provided.

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 29

8.2 DRBG Instantiation 916

A target DRBG is instantiated using a randomness source and the Instantiate_function (see 917
Section 7.2 and in SP 800-90A). This function uses a Get_entropy_input call to obtain entropy 918
input from the randomness source. Section 10 contains several constructions for this function. 919
The construction to be used for the Get_entropy_input function is selected as follows: 920

1. If the randomness source is a source DRBG, the DRBG may or may not have access to 921
a Live Entropy Source. During the instantiation of the target DRBG: 922

a. If the source DRBG has access to a Live Entropy Source, either the 923
Get_entropy_input construction in Section 10.1.1 or Section 10.1.2 shall be 924
used. However, if the security strength of the target DRBG is intended to be 925
higher than the security strength of the source DRBG, then the construction in 926
Section 10.1.2 shall be used. 927

b. If the source DRBG does not have access to a Live Entropy Source, the 928
Get_entropy_input construction in Section 10.1.1 shall be used. Note that an 929
error will be returned if the security strength indicated in the 930
Get_entropy_input call is greater than the security strength instantiated for the 931
source DRBG. 932

2. If the randomness source is a source NRBG, the Get_entropy_input construction in 933
Section 10.2 shall be used. 934

3. If the randomness source is an entropy source, a Get_entropy_input construction in 935
Section 10.3.3 shall be used. 936

Note that in some cases, prediction resistance can be requested for the instantiation during the 937
Instantiate_function call; if an entropy source does not appear to be available during the 938
execution of this function (as in case 1.b above) or will not be available during normal operation, 939
then an error indicator shall be returned to the consuming application. 940

Also, recall that the security strength for a DRBG is set during the instantiation process, and is 941
recorded in the internal state for that instantiation (see SP 800-90A). 942

8.3 Generation of Output Using a DRBG 943

A consuming application requests that a target DRBG generate pseudorandom output using the 944
Generate_function specified in Section 7.2 and SP 800-90A. 945

During the execution of the Generate_function, an implementation may determine that 946
reseeding is required (i.e., the end of the reseed interval has been reached – see SP 800-90A). 947
Reseeding requires the availability of a randomness source (see Section 6). If a randomness 948
source is not available when reseeding is required, then an error indication shall be returned to 949
the consuming application. Otherwise, a request for reseeding is made (see Section 8.4); this 950
request may or may not include a request for prediction resistance. 951

If prediction resistance is requested during a Generate_function call to obtain fresh entropy 952
for the DRBG, and 1) prediction resistance was not requested during the successful instantiation 953
of the DRBG, or 2) if a Live Entropy Source is not currently available, then an error indicator 954
shall be returned to the consuming application. Otherwise, a request for reseeding is made with 955

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 30

prediction resistance requested to indicate that access to a Live Entropy Source is required 956
during the execution of the reseed function (see Section 8.4). 957

A target DRBG with access to a Live Entropy Source may provide full-entropy output when 958
the construction in Section 10.4 is used. In this case, the DRBG is requested to provide s/2 bits 959
of output with prediction resistance, where s is the security strength of the DRBG instantiation. 960
Successive calls to the DRBG are required to obtain a (cumulative) bitstring longer than s/2 961
bits. Note that this capability can be considered as an ad-hoc Oversampling NRBG. 962

8.4 DRBG Reseeding 963

A target DRBG may be reseeded as a result of 1) a reseeding request by a consuming 964
application, 2) in response to a request for prediction resistance during the execution of a 965
Generate_function request (see Section 8.3), or 3) as otherwise determined during the 966
Generate_function execution (e.g., the end of the reseed interval has been reached) (see 967
Section 8.3). The call for the reseed function is included in Section 7.2. This function uses a 968
Get_entropy_input call to obtain entropy input for the target DRBG. 969

Reseeding of the target DRBG proceeds as follows: 970

1. If a randomness source is not available when reseeding of the target DRBG is requested, 971
then an error indication shall be returned to the consuming application (see SP 800-972
90A). 973

2. If prediction resistance is requested, and a Live Entropy Source is not available, then an 974
error indication shall be returned to the consuming application (see SP 800-90A) 975

3. If a randomness source returns an indication that entropy is not currently available, then 976
this indication shall be provided to the consuming application. 977

4. If the randomness source is a source DRBG, and a Live Entropy Source is available: 978

• If prediction resistance has been requested, and the security strength of the target 979
DRBG does not exceed the security strength of the source DRBG, then the 980
Get_entropy_input construction in either Section 10.1.1 or Section 10.1.2 shall be 981
used. 982

• If prediction resistance has been requested, and the security strength of the target 983
DRBG is higher than the security strength of the source DRBG, then the construction 984
in Section 10.1.2 shall be used. 985

• If prediction resistance has not been requested, then the Get_entropy_input 986
construction in either Section 10.1.1 or 10.1.2 shall be used. 987

5. If the randomness source is a source DRBG and a Live Entropy Source is not available: 988

• If the security strength of the target DRBG exceeds the security strength of the 989
source DRBG, then an error indication shall be returned to the consuming 990
application. 991

• If the security strength of the target DRBG does not exceed the security strength of 992
the source DRBG, then the Get_entropy_input construction in either Section 10.1.1 993
or 10.1.2 shall be used. 994

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 31

6. If the randomness source is a (source) NRBG, the Get_entropy_input construction in 995
Section 10.2 shall be used. 996

7. If the randomness source is an entropy source, a Get_entropy_input construction in 997
Section 10.3.3 shall be used. 998

8.5 Sources of Other DRBG Inputs 999

Fully implementing a DRBG requires a decision about the inclusion of nonces, personalization 1000
strings, and additional input, as well as how this information will be obtained. 1001

1. Nonces: In the case of the nonces specified in SP 800-90A, if a nonce is required and 1002
the nonce is not provided by the implementation environment (e.g., using a clock and/or 1003
a counter), then it shall be provided by the randomness source. See SP 800-90A for 1004
further discussion. 1005

2. Personalization strings: Personalization strings are optional input parameters that may 1006
be used during DRBG instantiation to differentiate between instantiations. If possible, 1007
the DRBG implementation should allow the use of a personalization string. Details on 1008
personalization strings are provided in SP 800-90A. 1009

3. Additional input: SP 800-90A allows additional input to be provided by a consuming 1010
application during the Generate_function and Reseed_function requests. RBG 1011
designers should include this option in the selected DRBG mechanism. This input 1012
could, for example, include information particular to a request for generation or 1013
reseeding, or could contain entropy collected during system activity. 1014

1015

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 32

9 NRBG Constructions 1016

An NRBG produces bits with full entropy. These bits are expected to be indistinguishable (in 1017
practice) from an ideal random sequence to any adversary. As stated in Section 5.6, this 1018
document provides constructions for NRBGs. The following two constructions are provided: 1019

• XOR Construction − This NRBG construction is based on combining the output of an 1020
approved entropy source with the output of an instantiated, approved DRBG using an 1021
exclusive-or (XOR) operation (see Section 9.3). 1022

• Oversampling Construction − This NRBG is based on using an approved entropy 1023
source that provides entropy input for an approved DRBG (see Section 9.4). 1024

The advantages of using these NRBGs include the following: 1025

• If the underlying DRBG mechanism in the NRBG has been instantiated securely, and 1026
the entropy source fails in an undetected manner, the NRBG will continue to provide 1027
random outputs, but at the security strength of the DRBG instantiation (the “fall-back” 1028
security strength), rather than providing outputs with full entropy. 1029

• Small deviations in the behavior of the entropy source in an NRBG will be masked by 1030
the DRBG output. 1031

In both NRBG constructions, an entropy source that deviates just slightly from its correct 1032
behavior leads to a very small security impact; the DRBG mechanisms mask any misbehavior, 1033
and an adversary who cannot break the DRBG mechanism's security will not be able to detect 1034
the misbehavior. When the entropy source malfunctions slightly, an adversary who can break 1035
the DRBG mechanism has only a slightly better chance to distinguish the NRBG outputs from 1036
ideal random outputs than he would if the entropy source is operating correctly. 1037

Examples of NRBGs are provided in Appendices A.1 and A.2. 1038

9.1 Entropy Source Access and General NRBG Operation 1039

Upon the receipt of a request for random bits from a consuming application, an NRBG will 1040
need to access its entropy source(s) to obtain one or more bitstrings with entropy. The entropy 1041
source(s) could 1) (almost) immediately return the requested output, 2) delay its response to the 1042
request until entropy is available, 3) return an explicit indication that sufficient entropy is not 1043
yet available, or 4) return an indication of an error. 1044

The details of interaction with the entropy source are the responsibility of the implementer of 1045
the entropy-source call discussed in Section 7.4. This function may need to access the entropy 1046
source(s) several times in order to obtain sufficient entropy to fulfill the Get_Entropy request. 1047
Section 5.3.4 discusses the entropy that results when the output of multiple entropy sources is 1048
used to obtain the requested entropy. If multiple entropy sources are used, and at least one of 1049
these has not failed, then NRBG operations may continue using the remaining (non-failed) 1050
entropy sources. Additional guidance for accessing the entropy source is provided in Section 1051
10.3.1. 1052

After the entropy source(s) provides its output, the NRBG may perform external conditioning. 1053
Further discussion on the use of external conditioning is provided in Section 10.3.2. The NRBG 1054

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 33

then uses the resulting bitsting as specified for each NRBG construction below (see Sections 1055
9.3 and 9.4). 1056

9.2 The DRBG Mechanism within the NRBG 1057

In the NRBG constructions specified in Sections 9.3 and 9.4, the DRBG instantiation used by 1058
the NRBG shall be instantiated at the highest possible security strength that is consistent with 1059
its cryptographic components and the security strengths supported by this Recommendation 1060
(i.e., either 112, 128, 192, or 256 bits). 1061

The DRBG mechanism included in the NRBG may be implemented to be directly accessible 1062
by a consuming application. Direct requests to the DRBG mechanism may use either the same 1063
DRBG instantiation used by the NRBG, or a separate instantiation may be used. The DRBG 1064
instantiation(s) shall be used as discussed in Section 8, including any prediction resistance 1065
capability. 1066

If a separate instantiation of the DRBG used by the NRBG is used for direct DRBG access, the 1067
separate instantiation may have any security strength supported by the DRBG's cryptographic 1068
components and this Recommendation, rather than at the highest security strength, as required 1069
by the NRBG construction. For example, a DRBG based on SHA-1 could be instantiated at 128 1070
bits for the instantiation used for the NRBG, and at 112 bits for the instantiation used for direct 1071
access. When a separate instantiation of the DRBG is used, the randomness source for that 1072
DRBG instantiation may be any randomness source discussed in Section 6, including the 1073
entropy source of the NRBG. 1074

9.3 XOR-NRBG Construction 1075

The XOR-NRBG construction is shown in Figure 5; an example is provided in Appendix A.1. 1076

For the XOR-NRBG construction: 1077

• One or more Live Entropy Sources shall be used. The input to the exclusive-OR function 1078
above shall be one of the following: 1079

o An approved entropy source as specified in SP 800-90B that provides full-1080
entropy output, 1081

o An approved entropy source that is externally conditioned as specified in 1082
Section 10.3.2 to provide full-entropy output, 1083

Figure 5: XOR-NRBG Construction

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 34

o Multiple approved independent entropy sources whose outputs are combined 1084
and conditioned as specified in Section 10.3.2 to provide full-entropy output, or 1085

o An NRBG designed as specified for the Oversampling Construction (see Section 1086
9.4). 1087

• A DRBG that accesses a randomness source for instantiation shall be used (see Section 1088
6). The randomness source need not be the entropy source used by the NRBG. Note that 1089
the DRBG mechanism is subject to the normal reseeding requirements of a DRBG. If 1090
the reseeding of the DRBG is required (e.g., because the DRBG may reach the end of 1091
its reseed interval), then the DRBG shall also incorporate a Reseed_function. 1092

• The bits from the randomness source that are used as input to the DRBG (e.g., to 1093
instantiate or reseed the DRBG) shall not be used for any other purpose (e.g., as bits 1094
within the NRBG construction that are XORed with the output of the DRBG to produce 1095
the NRBG output for a consuming application)3. 1096

• During NRBG requests to generate random bits, the DRBG is not requested to provide 1097
prediction resistance. Note, however, that the DRBG could provide prediction resistance 1098
when accessed directly. 1099

9.3.1 Instantiation of the DRBG used by the XOR-NRBG 1100

The DRBG instantiation used in the XOR-NRBG shall be instantiated at its highest security 1101
strength. Let highest_DRBG_security_strength be the highest security strength that the DRBG 1102
mechanism can assume (see SP 800-90A for this value). 1103

NRBG_ Instantiate: 1104
Input: integer prediction_resistance_flag, string personalization_string. 1105

Output: integer status, integer state_handle. 1106

Process: 1107
1. (status, state_handle) = Instantiate_function(highest_DRBG_security_strength, 1108

prediction_resistance_flag, personalization_string). 1109

2. Return (status, state_handle). 1110

Step 1 instantiates the DRBG at its highest-possible security strength. The 1111
prediction_resistance_flag and personalization_string are optional parameters to the NRBG_ 1112
Instantiate call; if provided, they shall be passed to the DRBG's Instantiate_function. Note 1113
that the Instantiate_function accesses its randomness source using a Get_entropy_input call; 1114
Section 8.2 discusses the Get_entropy_input call for instantiating the DRBG. 1115

In step 2, the value of status and state_handle returned in step 1 are returned to the consuming 1116
application; note that if the status does not indicate a successful instantiate process (i.e., an error 1117

3 This follows the general rule that bits conaining entropy must only be used once. Thus, entropy bits used to

seed or reseed the DRBG, and entropy-source output to be XORed into the DRBG outputs for this
construction must not be reused.

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 35

is indicated), the state_handle will be invalid. The handling of status codes by the consuming 1118
application is discussed in Section 7. 1119

9.3.2 XOR-NRBG Generation 1120

Let highest_DRBG_security_strength be the highest security strength that the DRBG 1121
mechanism can assume, let n be the requested number of bits, and let the state_handle be the 1122
value returned from the NRBG_ Instantiate function (see Section 9.3.1). 1123

NRBG_Generate: 1124
Input: integer (state_handle, n), string additional_input. 1125

Output: integer status, string returned_bits. 1126

Process: 1127
1. (status, ES_bits) = Get_entropy_input(n, n, n). 1128

2. If (status ≠ SUCCESS), then return (status, Null). 1129

3. (status, DRBG_bits) = Generate_function(state_handle, n, 1130
highest_DRBG_security_strength, additional_input). 1131

4. If (status ≠ SUCCESS), then return (status, Null). 1132

5. returned_bits = ES_bits ⊕ DRBG_bits. 1133

6. Return (SUCCESS, returned_bits). 1134

Step 1 requests that the entropy source generate bits. Since full-entropy bits are required, the 1135
Get_entropy_input construction in Section 10.3.3.1 shall be used if the entropy source 1136
provides full-entropy output; otherwise, the construction in Section 10.3.3.3 shall be used to 1137
condition the entropy-source output to obtain full-entropy bits. If the request is not successful, 1138
abort the NRBG_Generate function, returning the status received in step 1 and a Null string as 1139
the returned_bits (see step 2). If status indicates a success, ES_bits contains the entropy bits to 1140
be used later in step 5. 1141

In step 3, the DRBG is requested to generate bits at its highest security strength. If additional 1142
input is provided in the NRBG_Generate call, it shall be included in the Generate_function 1143
call. Note that in the NRBG_Generate call, the NRBG’s DRBG instantiation is not requested 1144
to provide prediction resistance. If the request is not successful, the NRBG_Generate function 1145
is aborted, and the status received in step 3 and a Null string are returned to the consuming 1146
application (see step 4). If status indicates a success, DRBG_bits contains the pseudorandom 1147
bits to be used in step 5. 1148

Note that it is possible that the DRBG would require reseeding during the Generate_function 1149
call in step 3. If a reseed of the DRBG mechanism is required during NRBG generation, it shall 1150
use the DRBG_Reseed function (see Section 7.2). 1151

Step 5 combines the bitstrings returned from the entropy source and the DRBG using an XOR 1152
operation; the resulting bitstring is returned to the consuming application in step 6. 1153

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 36

9.3.3 Direct DRBG Access 1154

The DRBG mechanism may be directly accessed as a DRBG using the same or a different 1155
instantiation than that used when the DRBG mechanism is performing as part of the NRBG. 1156

If the DRBG instantiation is different than the DRBG instantiation used by the XOR-NRBG 1157
(i.e., the same DRBG mechanism is used but with a different internal state), then access to the 1158
DRBG is discussed in Section 8). 1159

If the directly accessed DRBG instantiation is the same as the instantiation used for the NRBG, 1160
then the NRBG_DRBG Generate call specified in Section 7.3 is used (see below). 1161

NRBG_DRBG_Generate: 1162
Input: integer (state_handle, requested_number_of_bits, requested_security_strength, 1163

prediction_resistance_request), bitstring additional_input. 1164

Output: integer status, bitstring returned_bits. 1165

Process: 1166
1. (status, returned_bits) = Generate_function (state_handle, 1167

requested_number_of_bits, requested_security_strength, 1168
prediction_resistance_request, additional_input). 1169

2. Return status, returned_bits. 1170

In step 1, the NRBG’s DRBG instantiation is requested to generate bits; the input parameters 1171
provided in the NRBG_DRBG_Generate call are provided to the DRBG in the 1172
Generate_function call. Note that prediction resistance can be requested, unlike the 1173
Generate_function request in accessing the NRBG (see Section 9.3.2). The returned status 1174
code and bitstring (i.e., returned_bits) are returned to the consuming application in step 2. Note 1175
that returned_bits will be the Null string if the status does not indicate a success. 1176

When reseeding is required during the generate request (i.e., because prediction resistance is 1177
requested or the DRBG instantiation has reached the end of its reseed interval), the 1178
Reseed_function specified in Section 7.2 and SP 800-90A shall be used. The randomness 1179
source used by the Reseed_function may be any of those discussed in Section 6, including the 1180
entropy source of the NRBG. 1181

9.4 The Oversampling-NRBG Construction 1182

The Oversampling-NRBG construction is shown in Figure 6, and an example is provided in 1183
Appendix A.2. The DRBG mechanism within the NRBG repeatedly accesses a Live Entropy 1184
Source to obtain prediction resistance (i.e., reseeding the DRBG from the entropy source with 1185
sufficient entropy bits for the instantiated security strength of the DRBG mechanism). External 1186
conditioning of the entropy-source output may optionally be performed. In this NRBG 1187
construction, multiple calls requesting prediction resistance are made to the DRBG until the 1188
number of bits requested by the NRBG's consuming application have been obtained. In each 1189
DRBG call, a bitstring whose length is equal to half the security strength of the DRBG 1190
instantiation is requested and returned. This results in full-entropy outputs. 1191

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 37

The security argument is as follows: if the Live Entropy Source is functioning correctly, the 1192
outputs of the DRBG are affected by the fresh entropy provided by the Live Entropy Source 1193
and the accumulated entropy from the DRBG instantiation and previous calls to the Live 1194
Entropy Source. If there is an undetected failure in the Live Entropy Source, the DRBG 1195
mechanism will continue to function as a DRBG, using whatever entropy has been inserted into 1196
the DRBG prior to the failure. 1197

For the Oversampling-NRBG construction: 1198

• A Live Entropy Source shall be used, 1199

• Optional external conditioning may be performed, and 1200

• A DRBG mechanism with a prediction resistance capability shall be used that results in 1201
a reseed of the DRBG for each request for bits in the NRBG construction. This means 1202
that the DRBG shall include a reseed function. 1203

9.4.1 Instantiation of the DRBG used by the Oversampling NRBG 1204

The DRBG instantiation used by the Oversampling NRBG shall be instantiated at its highest 1205
security strength. Let highest_DRBG_security_strength be the highest security strength that the 1206
DRBG mechanism can assume (see SP 800-90A). 1207

NRBG_ Instantiate: 1208
Input: string personalization_string. 1209

Output: integer status, integer state_handle. 1210

Process: 1211
1. (status, state_handle) = Instantiate_function(highest_DRBG_security_strength, 1212

prediction_resistance _flag = TRUE, personalization_string). 1213

2. Return (status, state_handle). 1214

Step 1 instantiates the DRBG at its highest-possible security strength using the 1215
Instantiate_function call (see Section 7.2 and SP 800-90A). Since prediction resistance is 1216
required for this NRBG construction, the prediction_resistance_flag shall be set to TRUE. A 1217
personalization_string is an optional parameter, but shall be used if it is provided in the NRBG_ 1218
Instantiate call. Note that the Instantiate_function accesses its randomness source using a 1219
Get_entropy_input call; Section 8.2 discusses the Get_entropy_input call for instantiating 1220
the DRBG. 1221

Figure 6: Oversampling-NRBG Construction

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 38

In step 2, the value of status and state_handle returned in step 1 are returned to the consuming 1222
application; note that if the status does not indicate a successful instantiate process (i.e., an error 1223
is indicated), the state_handle will be invalid. The handling of status codes by the consuming 1224
application is discussed in Section 7. 1225

9.4.2 Oversampling-NRBG Generation 1226

Let n be the requested number of bits, let state_handle be the value returned from the NRBG_ 1227
Instantiate function (see Section 9.4.1) and let s be the highest_DRBG_security_strength (as 1228
used in Section 9.4.1). 1229

NRBG_ Generate: 1230
Input: integer (state_handle, n), string additional_input. 1231

Output: integer status, bitstring returned_bits. 1232

Process: 1233
1. tmp =Null. 1234

2. sum = 0. 1235

3. While (sum < n) 1236

3.1 (status, returned_bits) = Generate_function(state_handle, s/2, s, 1237
prediction_resistance_request = TRUE, additional_input). 1238

3.2 If (status ≠ SUCCESS), then return (status, Null). 1239

3.3 tmp = tmp || returned_bits. 1240

3.4 sum = sum + s/2. 1241

4. Return (SUCCESS, leftmost(tmp, n)). 1242

The bitstring intended to collect generated bits for return to the calling application (i.e., tmp) is 1243
initialized to the null bitstring in step 1, and a counter for recording the amount of entropy 1244
obtained is initialized to zero in step 2. 1245

In step 3, the DRBG is requested to generate bits until the requested number of full-entropy bits 1246
is accumulated. 1247

In step 3.1, the DRBG is requested to generate bits with prediction resistance (i.e., 1248
prediction_resistance_request is set to TRUE). For each call to the Generate_function, s/2 bits 1249
of output are requested from the DRBG, which provides s bits of security strength. The 1250
returned_bits will have full entropy, as stated in Sections 4.2 and 5.2. The additional_input is 1251
an optional input parameter in the NRBG_ Generate call; however, if additional_input is 1252
provided in the call, it shall be included as additional_input in the Generate_function call. 1253

If the request is not successful (i.e., there is an error), the NRBG_Generate function is aborted, 1254
and the status received in step 3.1 and a Null string are returned to the consuming application 1255
(see step 3.2). The handling of status codes by the consuming application is discussed in Section 1256
7. 1257

However, if status indicates a success, returned_bits contains s/2 bits with full entropy. 1258

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 39

In steps 3.3 and 3.4, the bitstring returned from step 3.1 (i.e., returned_bits) is concatenated 1259
with any previously obtained bits, and the amount of entropy received in the returned bits (i.e., 1260
s/2) is added into the counter. If the total number of full-entropy bits requested by the consuming 1261
application has not been obtained yet (i.e., n bits), then step 3 continues at step 3.1. Otherwise, 1262
the exact number of bits are selected from the collected bitstring and returned to the consuming 1263
application (see step 4). 1264

Note that the Generate_function call for prediction resistance in step 3.1 requires a call to the 1265
DRBG’s reseed function, which uses a Get_entropy_input call to access the entropy source; a 1266
Get_entropy_input construction in Section 10.3.3 shall be used by the DRBG’s 1267
Reseed_function. 1268

9.4.3 Direct DRBG Access 1269

The DRBG mechanism used by the Oversampling-NRBG may be directly accessed as a normal 1270
DRBG using the same or a different instantiation than that used when the DRBG mechanism is 1271
performing as part of the NRBG. If the directly accessed DRBG instantiation is the same as the 1272
instantiation used for the Oversampling-NRBG construction, then the DRBG_function as 1273
specified in Section 7.2 is used, and prediction resistance shall be performed on every call to 1274
the DRBG mechanism. Note that in this case, entropy-source requests are made only once per 1275
consuming-application request, rather than for every s/2 bits requested by the consuming 1276
application, where s is the instantiated security strength of the DRBG instantiation used by the 1277
NRBG. 1278

If a separate instantiation is used for direct access to the DRBG, then the Generate_function 1279
as specified in Section 7.2 is used, but a request for prediction resistance is optional. The 1280
randomness source for direct DRBG access may be any of those discussed in Section 6, 1281
including the entropy source of the Oversampling-NRBG construction. The DRBG shall be 1282
designed as discussed in Section 8. 1283

When reseeding is required during the generation request (i.e., because prediction resistance is 1284
requested or the DRBG instantiation has reached the end of its reseed interval), the 1285
Reseed_function specified in Section 7.2 and SP 800-90A shall be used. 1286

1287

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 40

10 Additional Constructions 1288

Additional constructions are required to complete an RBG.The first three sections are used by 1289
a target DRBG to access a randomness source. 1290

• Section 10.1 contains constructions to be used to access a source DRBG, 1291

• Section 10.2 contains a construction for accessing an NRBG, and 1292

• Section 10.3 contains constructions to directly access one or more entropy sources. 1293

These constructions include Get_entropy_input calls that serve as interfaces between the 1294
target DRBG and its randomness source. Figure 4 in Section 8 depicts the use of a randomness 1295
source by a target DRBG. The target DRBG invokes a Get_entropy_input call, which is, in 1296
effect, translated to the appropriate call for the selected randomness source by the interface 1297
routines. 1298

Note that when the randomness source of a target DRBG is a chain of RBG’s, an appropriate 1299
Get_entropy_input construction in this section needs to be used by each RBG in the chain to 1300
access its randomness source. When the source DRBG for a target DRBG is accessing its own 1301
randomness source, this source DRBG becomes a target DRBG during that process. For 1302
example, suppose that target DRBG A uses DRBG B as its randomness source, and DRBG B 1303
uses DRBG C as its randomness source. When DRBG A uses DRBG B as its randomness 1304
source, DRBG A is the target DRBG, and DRBG B is the source DRBG. However, when DRBG 1305
B uses DRBG C as its randomness source, DRBG B becomes the target DRBG, and DRBG C 1306
is DRBG B’s source DRBG. 1307

Section 10.4 provides a construction that will allow a consuming application to obtain full-1308
entropy output directly from a DRBG that supports prediction resistance. 1309

10.1 Constructions for Using a DRBG as a Randomness Source 1310

A target DRBG can use another approved DRBG as a randomness source. The source DRBG 1311
shall generate at least the minimum number of bits and the amount of entropy required to fulfill 1312
the Get_entropy_input request from the requesting DRBG (i.e., the target DRBG) or return an 1313
error indication. When a nonce is required for instantiating the target DRBG, and the nonce is 1314
not provided by the application or environment, the source DRBG shall also be used to obtain 1315
the nonce. 1316

Sections 10.1.1 and 10.1.2 provide constructions for use by a target DRBG to access a source 1317
DRBG. The source DRBG shall not be the same instantiation as the target DRBG, i.e., the 1318
source DRBG may be a completely different DRBG design than the target DRBG, or the same 1319
DRBG design but a different instantiation. 1320

This Recommendation assumes that the state handle for the source DRBG is known by the 1321
target DRBG (e.g., because of a contractual relationship). Whether or not a source DRBG can 1322
provide prediction resistance may also be known, or can be determined by requesting a 1323
prediction-resistance capability during instantiation using that DRBG. 1324

Section 10.1.1 specifies a construction that can be used when the security strength to be 1325
requested by a target DRBG does not exceed the security strength of the source DRBG. Section 1326
10.1.2 specifies a construction that can be used when a target DRBG could request full entropy 1327

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 41

or an amount of entropy greater than the security strength of the source DRBG, and the source 1328
is known to provide prediction resistance (i.e., the source has access to a Live Entropy Source). 1329

10.1.1 The Requested Security Strength Does Not Exceed the Strength of the Source 1330
DRBG 1331

The use of this construction is appropriate when the source DRBG is instantiated at a security 1332
strength that is known to be equal to or greater than the security strength to be requested by the 1333
target DRBG (e.g., because of a contractual relationship, or because the target DRBG will only 1334
request the lowest security strength - 112 bits). The source DRBG may or may not support 1335
prediction resistance. Note that when prediction resistance is requested, the source DRBG is 1336
reseeded once before providing the requested number of bits to the target DRBG, as opposed to 1337
possibly multiple times as may be the case for the construction in Section 10.1.2. 1338

The Get_entropy_input call in the target DRBG accesses the source DRBG using the 1339
following construction: 1340

 Get_entropy_input: 1341
Input: integer (min_entropy, min_length, max_length, prediction_resistance_request). 1342

Output: integer status, bitstring returned_bits. 1343

Process: 1344
1. If (min_entropy > min_length), then min_length = min_entropy. 1345

2. If (min_length > max_length), then return (FAILURE, Null). 1346

3. (status, returned_bits) = Generate_function (state_handle, min_length, 1347
min_entropy, prediction_resistance_request). 1348

4. If (status ≠ SUCCESS), then return (status, Null). 1349

5. If ((length_in_bits(returned_bits) > max_length)), then returned_bits = 1350
df(returned_bits, max_length). 1351

6. Return (SUCCESS, returned_bits). 1352

Steps 1 and 2 check the input parameters and either adjust them (step 1), or return an indication 1353
of a failure because the received values are unacceptable, along with a Null sring as the 1354
returned_bits (step 2). 1355

In step 3, the Generate_function (see Section 7.2) passes the number of bits to be returned 1356
(min_length), the minimum security strength that needs to be provided (min_entropy) and any 1357
prediction-resistance request parameters provided in the Get_entropy_input call to the source 1358
DRBG indicated by the state_handle. Either a status code indicating success and the requested 1359
bits are returned, or an indication of an error is returned. 1360

The status is checked in step 4, and the Get_entropy_input routine is aborted if an indication 1361
of success was not returned from step 3; in this case, the status is returned, along with a Null 1362
string as the returned_bits. The handling of status codes by the consuming application is 1363
discussed in Section 7. 1364

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 42

If the length of the returned_bits exceeds the maximum length of the bitstring that can be 1365
handled (max_length), the bitstring is passed through a derivation function from SP 800-90A to 1366
compress the bitstring to max_length bits (step 5). 1367

In step 6, a status code indicating success and the returned_bits are returned. 1368

Note that if prediction resistance is requested, the source DRBG will use a reseed function with 1369
its own Get_entropy_input call; see Section 8.4 for its form. 1370

10.1.2 Accessing a Source DRBG with Prediction Resistance to Obtain any Security 1371
Strength 1372

The use of this construction is appropriate when the source DRBG is known to have access to 1373
a Live Entropy Source. The source DRBG may be instantiated at any security strength, 1374
including a security strength that is less than that of the target DRBG. Multiple calls requesting 1375
prediction resistance are made in the Get_entropy_input routine of the target DRBG (see 1376
below) until a bitstring with sufficient entropy is assembled. The resulting bitstring will have 1377
full entropy. 1378

For this construction, either the security strength s of the source DRBG shall be known (e.g., 1379
because of a contractual relationship), or s shall be set in the request to the minimum security 1380
strength of a DRBG in this Recommendation (i.e., s = 112). 1381

The following Get_entropy_input call can be used to obtain the required amount of entropy: 1382

Get_entropy_input: 1383
Input: integer (min_entropy, min_length, max_length, prediction_resistance_request). 1384

Output: integer status, bitstring collected_bits. 1385

Process: 1386
1. If (min_entropy > min_length), then min_length = min_entropy. 1387

2. If (min_entropy > max_length), then return (FAILURE, Null). 1388

3. collected_bits = Null. 1389

4. collected_entropy = 0. 1390

5. While (collected_entropy < min_entropy) 1391

5.1 (status, tmp) = Generate_function (state_handle, s/2, s, 1392
prediction_resistance_request = TRUE). 1393

5.2 If (status ≠ SUCCESS), then return (status, Null). 1394

5.3 collected_bits = collected_bits || tmp. 1395

5.4 collected_entropy = collected_entropy + s/2. 1396

6. If ((length_in_bits(collected_bits) > max_length)), then collected_bits = 1397
df(collected_bits, max_length). 1398

7. Return (SUCCESS, collected_bits). 1399

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 43

Steps 1 and 2 check the input parameters and either adjust them (step 1), or return an indication 1400
of a failure because the received values are unacceptable, along with a Null sring as the 1401
returned_bits (step 2). 1402

The bitstring intended to collect generated bits (collected_bits) for return to the calling routine 1403
is initialized to the null bitstring in step 3, and a counter for recording the amount of entropy 1404
obtained (collected_entropy)is initialized to zero in step 4. 1405

Step 5 collects bits generated by the source DRBG indicated by the state_handle. Step 5.1 1406
requests that s/2 bits be generated by the source DRBG at a security strength of s bits; note that 1407
even if prediction resistance is not explicitly requested in the Get_entropy_input call, the 1408
Generate_function call requests prediction resistance. If this call is successful, full-entropy 1409
bits are returned in tmp. 1410

Step 5.2 checks the status returned for step 5.1; if the status does not indicate a success, then 1411
the Get_entropy_input routine is aborted; the status code is returned, along with a null string 1412
as the returned_bits. Step 5.3 concatenates the newly acquired bits to any previously obtained 1413
bits, and step 5.4 adds in the entropy of the newly acquired bits to the entropy counter. Step 5 1414
is repeated until sufficient entropy has been obtained. 1415

In step 6, if the length of the concatenated bitstring exceeds the maximum length of the bitstring 1416
that can be handled (max_length), the bitstring is passed through a derivation function from SP 1417
800-90A to compress the bitstring to max_length bits. 1418

In step 7, a successful status code is returned to the calling application, along with the 1419
collected_bits. 1420

Note that the source DRBG requires a reseed function with its own Get_entropy_input call; 1421
see Section 8.4 for its form. 1422

10.2 Construction for Using an NRBG as a Randomness Source 1423

This section specifies a construction for a target DRBG to access an NRBG as the randomness 1424
source. An NRBG includes a Live Entropy Source and provides full entropy output. The target 1425
DRBG’s Get_entropy_input call to a source NRBG is fulfilled as follows: 1426

Get_entropy_input: 1427
Input: integer (min_length). 1428

Output: integer status, bitstring returned_bits. 1429

Process: 1430
1. (status, returned_bits) = NRBG_Generate(state_handle, min_length). 1431

2. If (status ≠ SUCCESS), then return (status, Null). 1432

3. Return (SUCCESS, returned_bits). 1433

In step 1, the NRBG_Generate function specified in Section 7.3 is called to obtain min_length 1434
bits. The state handle refers to the DRBG instantiation used by the NRBG. 1435

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 44

Step 2 checks the status returned for step 1; if the status indicates that the request was not 1436
successful, then the Get_entropy_input is aborted; the status code is returned, along with a 1437
null string as the returned_bits. 1438

Otherwise, a successful status code is returned to the calling application, along with the newly 1439
generated bits (step 3). 1440

10.3 Constructions for Using an Entropy Source as a Randomness Sources 1441

A single entropy source or multiple entropy sources may be used as a randomness source(s) by 1442
a DRBG, and the output of these entropy sources may be externally conditioned before use. 1443
Section 10.3.1 discusses the Get_Entropy call to be used by an implementation to access 1444
entropy sources, including methods for compressing entropy-source output when the entropy 1445
rate of the entropy source(s) is very low, and the entropy bits need to be condensed into a shorter 1446
bitstring before use. Section 10.3.2 provides guidance for the external conditioning of entropy-1447
source output(s) obtained by the Get_entropy_input function prior to use by a DRBG. Section 1448
10.3.3 provides the Get_entropy_input constructions to be used by a target DRBG to access 1449
one or more entropy sources using a Get_Entropy call. 1450

10.3.1 The Get_Entropy Call 1451

The Get_Entropy call (used by the Get_entropy_input construction in Section 10.3.3) is used 1452
to obtain entropy from one or more independent entropy sources. The form of the call is 1453
specified in Section 7.4, i.e., 1454

(status, entropy_bitstring) = Get_Entropy(requested_entropy, max_length), 1455

where max_length is an optional parameter that indicates the maximum length allowed for 1456
entropy_bitstring. The implementation of this function depends on the entropy sources to be 1457
accessed. 1458

The expected behavior of the Get_Entropy function is as follows: 1459

1. When a non-null entropy_bitstring is returned from a Get_Entropy call, the 1460
entropy_bitstring shall contain sufficient entropy to fulfill the request, and the length of 1461
the bitstring shall not exceed the value of max_length (if optionally provided). The 1462
status shall indicate a SUCCESS when and only when these conditions are met. 1463

2. If an error is detected during the execution of the Get_Entropy function or sufficient 1464
entropy is not currently available, then the Get_Entropy function shall return a status 1465
code indicating the problem, along with a null entropy_bitstring. 1466

3. The rules for combining the entropy bits produced by one or more entropy sources and 1467
determining the assessed entropy are compliant with the assumptions discussed in items 1468
3 and 4 of Section 4.2. 1469

4. When the entropy produced by the entropy source(s) is very long (e.g., because the 1470
entropy rate of the entropy source(s) is very low), and the entropy bits may need to be 1471
condensed into a shorter bitstring, the Get_Entropy function in Section 10.3.1.1 or 1472
Section 10.3.1.2 shall be used to condense the entropy bits without losing the available 1473
entropy in the bit string. 1474

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 45

5. If the returned entropy exceeds the requested entropy, entropy_bitstring shall only be 1475
credited with the requested amount of entropy. 1476

6. The Get_Entropy function could return a status code indicating that entropy is not 1477
currently available (e.g., the entropy source(s) returned this indication, or the 1478
Get_Entropy function has waited for a response from the entropy source(s) for an 1479
unacceptable amount of time). In this case, the Get_entropy function shall return a null 1480
entropy_bitstring. 1481

Note that in some cases, a short delay could occur before a response is received from the 1482
Get_Entropy call. 1483

Sections 10.3.1.1 and 10.3.1.2 provide methods for condensing bitstrings containing entropy, 1484
when required, during a Get_Entropy call. Each of the methods includes a step for querying 1485
all available entropy sources. If all available entropy sources indicate fatal errors, than the 1486
Get_Entropy function shall return an error indication and a null value for the entropy_bitstring 1487
to the routine that called the Get_Entropy function (i.e., a Get_entropy_input construction 1488
provided in Section 10.3.3). If multiple entropy sources are used during the execution of the 1489
Get_Entropy function, queries may be made to any combination of those entropy sources. Note 1490
that if no entropy could be collected from any of the entropy sources, an error indication is 1491
returned as the status code, and a Null bitstring is returned as the entropy_bitstring to the routine 1492
that called the Get_Entropy function. 1493

10.3.1.1 Condensing Entropy Bits during Entropy Collection 1494
The entropy in a bitstring can be condensed during the collection process (e.g., after each access 1495
of one or more entropy source(s) using a nonce and derivation function specified in SP 800-1496
90A. The following pseudocode describes the process for the Get_Entropy call: 1497

Get_Entropy: 1498
Input: integer (requested_entropy, max_length). 1499

Output: integer status, bitstring entropy_bitstring. 1500

Process: 1501
1. If requested_entropy > max_length, return an error indication and a null value for 1502

the entropy_bitstring. 1503

2. n = 2 × requested_entropy. 1504

3. entropy_bitstring = 0n. 1505

4. collected_entropy = 0. 1506

5. While collected_entropy < requested_entropy 1507

5.1 Query one or more entropy sources to obtain queried_bits and the 1508
assessed_entropy for those bits. Note that queried_bits is the concatenated 1509
output of the queried entropy sources, and assessed_entropy is the total 1510
entropy obtained from those entopy sources. If all available entropy sources 1511
indicate fatal errors, then the Get_Entropy function returns an error indication 1512
and a null value for the entropy_bitstring. The requirements for this process 1513
are provided in Section 10.3.1. 1514

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 46

5.2 nonce = MakeNextNonce(). 1515

5.3 entropy_bitstring = entropy_bitstring ⊕ df((nonce || queried_ bits), n). 1516

5.4 collected_entropy = collected_entropy + assessed_entropy. 1517

6. If (n > max_length), then entropy_bitstring = df(entropy_bitstring, max_length). 1518

7. Return (SUCCESS, entropy_bitstring). 1519

Step 1 checks that the requested entropy is not greater than then maximum length of the string 1520
to be returned as entropy_bitstring. 1521

Step 2 sets the length of the bit string that will be collected using this process; there may be no 1522
relationship between the value of n and the max_length parameter that could optionally be 1523
provided in the Get_Entropy call. Step 3 initializes the entropy_bitstring into which the 1524
entropy will be accumulated to all zeros, and step 4 sets the entropy-collection counter to zero. 1525

Step 5 collects the entropy. In step 5.1, one or more entropy sources are queried. 1526

In step 5.2, a nonce is determined. The nonce should not repeat during the lifetime of the target 1527
DRBG (i.e., a DRBG instantiation). The target DRBG shall not be used to provide this nonce, 1528
since there is a (very small) probability that values could repeat. The simplest implementation 1529
of MakeNextNonce produces a large counter value. 1530

In step 5.3, the nonce is combined with the queried bits returned in step 5.1 using a derivation 1531
function specified in SP 800-90A, and the assessed_entropy from the current query is added 1532
into the entropy counter in step 5.4. 1533

After all requested entropy bits are obtained, step 6 checks that the length of the accumulated 1534
bitstring does not exceed the max_length value that may have been provided as an input to the 1535
Get_Entropy function, and condenses the entropy_bitstring, if necessary. Note that if 1536
max_length was not provided, this step is not needed. 1537

In step 7, the collected entropy_bitstring is returned to the calling routine (i.e., a 1538
Get_entropy_input function), along with a status of SUCCESS. 1539

10.3.1.2 Condensing After Entropy Collection 1540
The entropy in a bitstring can be condensed after the entire amount of requested entropy has 1541
been collected by the Get_Entropy function using a derivation function specified in SP 800-1542
90A. The following pseudocode describes the process for the Get_Entropy call: 1543

Get_Entropy: 1544
Input: integer (requested_entropy, max_length). 1545

Output: integer status, bitstring entropy_bitstring. 1546

Process: 1547
1. If requested_entropy > max_length, return an error indication and a null value for 1548

the entropy_bitstring. 1549

2. collected_entropy = 0. 1550

3. entropy_bitstring = the Null string. 1551

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 47

4. While collected_entropy < requested_entropy 1552

4.1 Query one or more entropy sources to obtain queried_bits and the 1553
assessed_entropy for those bits. Note that queried_bits is the concatenated 1554
output of the queried entropy sources, and assessed_entropy is the total 1555
entropy obtained from those entopy soucces. If all available entropy sources 1556
indicate fatal errors, than the Get_Entropy function would return an error 1557
indication and a null value for the entropy_bitstring to the Get_Entropy 1558
calling routine (i.e., a Get_entropy_input function); the requirements for this 1559
process are provided in Section 10.3.1. 1560

4.2 entropy_bitstring = entropy_bitstring || queried_bits. 1561

4.3 collected_entropy = collected_entropy + assessed_entropy. 1562

5. n = length_in_bits(entropy_bitstring). 1563

6. If (n > max_length), then entropy_bitstring = df(entropy_bitstring, max_length). 1564

7. Return (SUCCESS, entropy_bitstring). 1565

Step 1 checks that the requested entropy is not greater than then maximum length of the string 1566
to be returned as entropy_bitstring. 1567

Steps 2 and 3 initialize the entropy-collection counter to zero and initialize the bitstring into 1568
which the entropy bits will be accumulated to the null sring. 1569

Step 4 collects the entropy. In step 4.1, one or more entropy sources are queried. In step 4.2, the 1570
string of queried_bits is concatenated to any previously collected bits, and the entropy-1571
collection counter is incremented by the amount of entropy present in the latest collected bits. 1572
Step 4 is iterated until sufficient entropy has been collected to fulfill the amount of entropy 1573
requested for the Get_Entropy call. 1574

After all requested entropy has been obtained, step 5 determines the length of the collected 1575
bitstring, and step 6 checks that this length does not exceed the value of max_length that may 1576
optionally have been provided in the Get_Entropy call. Note that if max_length was not 1577
provided, this step is not needed. 1578

In step 7, the collected entropy_bitstring is returned to the calling routine (i.e., a 1579
Get_entropy_input function), along with a status of SUCCESS. 1580

10.3.2 External Conditioning Functions 1581

Conditioning may be performed on the output of an entropy source prior to use by an RBG 1582
(referred to as external conditioning). A conditioning function may be used to distribute the 1583
entropy in a bitstring across the entire output of the conditioning function, to condense the 1584
entropy in the input bitstring into a shorter bitstring, and can be used to provide a bit string with 1585
full entropy. 1586

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 48

The external conditioning of entropy-source output is optional within an RBG unless the 1587
entropy-source output is used by the XOR-NRBG, and the entropy source does not provide full-1588
entropy output itself (see Figure 7). In this case, external conditioning is required to provide bits 1589
with full entropy on the left side of the "⊕" in Figure 7; if the same entropy source is used to 1590
seed or reseed the DRBG of the XOR-NRBG, external conditioning is not required. 1591

When external conditioning is performed, a vetted or referenced conditioning function from [SP 1592

800-90B] shall be used. 1593

10.3.2.1 Using an External Conditioning Function 1594
Figure 8 depicts the process of collecting entropy from one or more entropy sources and 1595
conditioning the resulting entropy_bitstring, which is a concatenation of the output of the 1596
entropy source(s). 1597

When (optional) external conditioning is performed, one of the vetted conditioning functions 1598
listed or referenced in [SP 800-90B] shall be used. A conditioning function shall be selected 1599
such that the maximum amount of entropy to be requested using a Get_entropy_input call is 1600
no greater than the length of the conditioning function's output block, i.e., 1601

min_entropy ≤ nout, 1602

where, 1603

For a hash function, HMAC, and Hash_df: 1604

nout = the length of the hash function 1605
output block. 1606

For CMAC and CBC-MAC: 1607

nout = the length of an AES block (128 1608
bits). 1609

For Block_Cipher_df: 1610

nout = the length of the AES key (128, 1611
192 or 256 bits). 1612

10.3.2.2 Keys Used for External Conditioning 1613
 For the keyed external conditioning functions 1614
(e.g., HMAC, CMAC and CBC-MAC), the key 1615

Figure 8: Using a Conditioning Function

Figure 7: XOR-NRBG Requiring External Conditioning

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 49

should be generated randomly each time that an RBG powers up. The key could be obtained 1616
by using entropy bits from the entropy source(s) with at least m bits of assessed entropy and a 1617
minimum length of keylen bits, where m is the security strength to be provided in the key, and 1618
keylen is the length of the key, i.e., 1619

HMAC: m ≥ {112, 128, 192, 256}; keylen = m. 1620

AES-128: m = keylen = 128. 1621

AES-192: m = keylen = 192. 1622

AES-256: m = keylen = 256. 1623

When the length of the acquired entropy_bitstring is greater than keylen bits, the entropy bit 1624
string needs to be compressed to the appropriate key length using a derivation function from 1625
SP 800-90A to determine the key: 1626

Key = df(entropy_bitstring, keylen), 1627

where df is either Hash_df or Block_Cipher_df. 1628

When Hash_df is used for compressing the entropy bits, the preimage security strength of the 1629
hash function used in the derivation function shall meet or exceed the value of m. 1630

When Block_Cipher_df is used for compressing the entropy bits, the key used by the derivation 1631
function itself may be an arbitrary value. 1632

10.3.3 Get_entropy_input Constructions for Accessing Entropy Sources 1633

Section 10.3.3.1 provides a Get_entropy_input construction for the case where a conditioning 1634
function is not used. Section 10.3.3.2 provides a construction for obtaining entropy and using a 1635
conditioning function to compress entropy into a shorter bitstring when full entropy output is 1636
not required. Section 10.3.3.3 provides a construction for obtaining full entropy using a 1637
conditioning function. 1638

10.3.3.1 Construction When a Conditioning Function is not Used 1639
This construction is appropriate when the RBG can use the entropy-source output as produced, 1640
except for any condensing of the entropy bitstring as specified in Section 10.3.1.1 or 10.3.1.2. 1641
If full-entropy output is required from this construction, an entropy source shall have been 1642
selected that provides it without further processing. 1643

In this construction, the target DRBG makes a Get_entropy_input call to obtain entropy bits 1644
from the entropy source(s), indicating the min-entropy required. The Get_entropy_input 1645
function below accesses the entropy source(s) using the Get_Entropy call discussed in Section 1646
10.3.1. An explicit request for prediction resistance in the Get_entropy_input request is not 1647
required, since the entropy source(s) are already being invoked in the construction. 1648

Get_entropy_input: 1649
Input: integer (min_entropy, max_length). 1650

Output: integer status, bitstring entropy_bitstring. 1651

Process: 1652
1. (status, entropy_bitstring) = Get_Entropy(min_entropy, max_length). 1653

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 50

2. If (status ≠ SUCCESS), then return (status, Null). 1654

3. Return SUCCESS, entropy_bitstring. 1655

In step 1, the entropy bits are requested from the entropy source using a Get_Entropy function; 1656
the specifics of this function depend on the entropy source(s) to be used. The returned status 1657
from step 1 is checked in step 2; if the status indicates that the call was not successful, the 1658
received status and a Null string are returned from the Get_entropy_input function. 1659

In step 3, an indication of SUCCESS and the entropy_bitstring are returned. 1660

10.3.3.2 Construction When a Vetted Conditioning Function is Used and Full Entropy is Not 1661
Required) 1662

When an external conditioning function is used to process entropy-source output, any of the 1663
vetted conditioning functions listed or referenced in SP 800-90B may be used, providing that 1664
the entropy requested by the DRBG mechanism is no greater than the length of the conditioning 1665
function output (nout), as specified in Section 10.3.2.1. 1666

The following construction will compress the entropy contained in the input string into a string 1667
of nout bits. The entropy in the output string will be distributed uniformly across the output 1668
string; therefore, the entire output string shall be used as entropy input for the DRBG. 1669

Get_entropy_input: 1670
Input: integer (min_entropy). 1671

Output: integer status, bitstring entropy_bitstring. 1672

Process: 1673
1. If (min_entropy > nout) then return(status, Null), where status indicates an error 1674

condition. 1675

2. (status, entropy_bitstring) = Get_Entropy(min_entropy). 1676

3. If (status ≠ SUCCESS), then return (status, Null). 1677

4. output_bitstring = Conditioning_function(entropy_bitstring). 1678

5. Return (SUCCESS, output_bitstring. 1679

Step 1 checks that the amount of entropy requested can be handled by the conditioning 1680
function, returning an error indication as the status and a Null string. 1681

Step 2 requests the entropy from the entropy source(s), and step 3 checks whether or not there 1682
was an error returned as the status in step 2. If status indicated an error, the status and a Null 1683
string are returned to the calling routine. Note that the Get_Entropy call does not require a 1684
max_length parameter, since the Conditioning_function in step 4 will condense the 1685
entropy_bitstring to nout bits. 1686

Step 4 invokes the conditioning function for processing the entropy_bitstring obtained from 1687
step 2. The specific Conditioning_function call is specified in Section 7.5. 1688

Step 5 returns the conditioned result. 1689

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 51

10.3.3.3 Construction When a Vetted Conditioning Function is Used to Obtain Full Entropy 1690
Bitstrings 1691

This construction will produce full-entropy bits as output (e.g., for the XOR-NRBG when the 1692
entropy source does not provide full-entropy output). Any of the vetted conditioning functions 1693
listed or referenced in SP 800-90B may be used, providing that the entropy requested by the 1694
DRBG mechanism is no greater than the length of the conditioning function output (nout), as 1695
specified in Section 10.3.2.1. 1696

In the construction below, the target DRBG makes a Get_entropy_input call to obtain entropy 1697
from one or more entropy sources, indicating the min-entropy required; any condensing of the 1698
entropy source output into shorter bitstrings shall have been performed using one of the 1699
methods in Section 10.3.1. 1700

Get_entropy_input: 1701
Input: integer (min_entropy). 1702

Output: integer status, bitstring entropy_bitstring. 1703

Process: 1704
1. If (min_entropy > nout) then return(status, Null), where status indicates an error 1705

condition. 1706

2. (status, entropy_bitstring) = Get_Entropy(2 × nout). 1707

3. If (status ≠ SUCCESS), then return (status, Null). 1708

4. (status, returned_bitstring) = Conditioning_function(entropy_bitstring). 1709

5. entropy_bitstring = leftmost(entropy_bitstring, min_entropy). 1710

6. Return SUCCESS, entropy_bitstring. 1711

Step 1 checks that the amount of entropy requested can be handled by the conditioning function, 1712
returning an error indication as the status and a Null string. 1713

Step 2 requests an amount of entropy from the entropy source(s) that is twice the length of the 1714
conditioning-function outut block, and step 3 checks whether or not there was an error returned 1715
as the status in step 2. If status indicated an error, the status and a Null string are returned to the 1716
calling routine. Note that the Get_Entropy call does not require a max_length parameter, since 1717
the Conditioning_function in step 4 will condense the entropy_bitstring to nout bits. 1718

Step 4 invokes the conditioning function for processing the entropy_bitstring obtained from 1719
step 2. The specific Conditioning_function call is specified in Section 7.5. 1720

Step 5 truncates the conditioning function output to the number of bits requested in the 1721
Get_entropy_input call, and step 6 returns the result. 1722

10.4 General Construction Using a DRBG with Prediction Resistance to 1723
Obtain Full-Entropy Output Upon Request 1724

A DRBG with a Live Entropy Source that provides prediction resistance can also be used to 1725
provide full-entropy output when requested. The following construction can be used by a 1726
consuming application to request bits from a DRBG with and without prediction resistance, and 1727

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 52

with and without requesting full-entropy output. The construction is divided into two paths; the 1728
path used depends on whether full-entropy output is requested. 1729

When full entropy is not requested, the DRBG is requested to generate bits normally, i.e., 1730
without special processing. 1731

When full entropy is requested, multiple calls are made to the DRBG to obtain the number of 1732
bits and the entropy needed by the consuming application. Each call requests that s/2 bits be 1733
returned, where s is the security strength requested. The value of s requested depends on the 1734
randomness source, and it is up to the developer to select an appropriate value. If the 1735
randomness source is known to be an entropy source, then any of the approved security 1736
strengths can be requested. If the randomness source is known to be a source DRBG, and the 1737
security strength supported by that source DRBG is known, then s can be a value that does not 1738
exceed the source DRBG's security strength; otherwise, the use of the lowest security strength 1739
supported by this Recommendation is recommended (i.e., 112 bits). 1740

Let s be an appropriate security strength for the randomness source to be used. 1741

 1742

General_DRBG_Generate: 1743
Input: integer (state_handle, requested_number_of_bits, security_strength, 1744

full_entropy_request, prediction_resistance_request), string additional_input. 1745

Output: integer status, bitstring returned_bits. 1746

Process: 1747
1. If (full_entropy_request = TRUE), then 1748

Comment: Full entropy has been requested. 1749

1.1 returned_bits =Null. 1750

1.2 sum = 0. 1751

1.3 While (sum < requested_number_of_bits) 1752

1.3.1 (status, tmp) = Generate_function(state_handle, s/2, s, 1753
prediction_resistance_request = TRUE, additional_input). 1754

1.3.2 If (status ≠ SUCCESS), then return (status, Null). 1755

1.3.3 returned_bits = returned_bits || tmp. 1756

1.3.4 sum = sum + s/2. 1757

Comment: Use a null string as the additional_input for 1758
subsequent iterations of the While loop. 1759

1.3.5 additional_input = Null. 1760

1.4 Return SUCCESS and leftmost(returned_bits, requested_number_of_bits). 1761

Comment: Full entropy output has not been requested. 1762

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 53

2. (status, returned_bits) = Generate_function(state_handle, 1763
requested_number_of_bits, security_strength, prediction_resistance_request, 1764
additional_input). 1765

3. If (status ≠ SUCCESS), return(status, Null). 1766

4. Return (SUCCESS, returned_bits). 1767

Step 1 handles the case in which full entropy is requested. 1768

• A bitstring intended to collect entropy bits for return to the calling routine (i.e., 1769
returned_bits) is initialized to the null bitstring in step 1.1, and a counter for recording 1770
the amount of entropy obtained (i.e., sum) is initialized to zero in step 1.2. Step 1.3 is 1771
iterated until the requested number of bits is collected. 1772

• Step 1.3.1 uses a Generate_function call to obtain s/2 bits with full entropy during each 1773
request. The appropriate values from the General_DRBG_Generate call are used as 1774
input during the Generate_function call. The Generate_function makes a 1775
Get_entropy_input request, which is fulfilled using an appropriate construction in 1776
Section 10.1, 10.2 or 10.3. Note that the prediction_resistance_request parameter for the 1777
Generate_function call is set to TRUE so that the DRBG is alerted that the Live 1778
Entropy Source must be accessed. Also, note that the security_strength and 1779
prediction_resistance_request input parameters in the General_DRBG_Generate 1780
request are ignored when full entropy is requested in this path. 1781

• Step 1.3.2 checks whether the status returned from step 1.3.1 indicates a SUCCESS; if 1782
not, then the status code is returned to the consuming application, along with a Null 1783
string as the returned_bits. 1784

• Steps 1.3.3 and 1.3.4 concatenate the bits obtained from step 1.3.1 to any previously 1785
acquired bits and adds the amount of entropy obtained into the entropy counter (sum). 1786
Step 1.3.5 sets any additional input provided in the General_DRBG_Generate call to 1787
the Null string. 1788

• In step 1.4, the requested number of full-entropy bits are returned to the consuming 1789
application. 1790

Steps 2-4 handle the case in which the DRBG is requested to provide output, with or without 1791
prediction resistance, but not with full entropy. 1792

• Step 2 issues a Generate_function call, using the input parameters provided in the 1793
General_DRBG_Generate call; note that prediction resistance may or may not be 1794
requested, in this case. 1795

• Step 3 checks whether the status returned from step 2 indicates a SUCCESS; if not, then 1796
the status code is returned to the consuming application, along with a Null string as the 1797
returned_bits. 1798

• Otherwise, the returned_bits provided in step 2 are returned to the consuming 1799
application, along with a status code of SUCCESS. 1800

1801

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 54

11 Combining RBGs 1802

11.1 Discussion 1803

RBGs may be combined if at least one of the RBGs is approved. Combining RBGs might be 1804
appropriate for a number of reasons, including: 1805

• The desire to use an unapproved DRBG that is believed to be superior in security over 1806
an approved DRBG, 1807

• The desire to combine DRBGs or NRBGs that use different entropy sources or are based 1808
on different components or design principles for increased assurance, or 1809

• The desire to combine RBGs from different implementers or RBGs that are contained 1810
in different modules in order to obtain increased assurance. 1811

Combining RBGs is a method of meeting the requirements of this Recommendation, while 1812
gaining any security properties provided by other RBGs in which the RBG designer may have 1813
confidence. Designs that incorporate DRBGs that are not approved in this Recommendation, 1814
but which are believed by the designer to be highly secure, are good candidates for use in a 1815
combined RBG. 1816

The construction for combining RBGs provides assurance that the resulting combined RBG will 1817
be no weaker than the strongest approved component RBG, assuming that the sources of 1818
entropy are independent (i.e., different independent entropy sources are used, or the entropy 1819
input for a DRBG is used only for that DRBG). Note, however, that there is no assurance that 1820
the combined RBG will be substantially stronger than the strongest component RBG. 1821

11.2 Construction to Combine RBGs 1822

11.2.1 Overview 1823

This construction allows N component RBGs, at least one of which is approved, to be combined 1824
to make a new approved RBG. 1825

The requirements, security strength and properties of the combined RBG are as follows: 1826

• The combined RBG construction shall include at least one approved RBG that is 1827
constructed in accordance with this Recommendation. The combined RBG shall only 1828
be considered to be operating correctly if at least one approved RBG in the construction 1829
is operating correctly. An approved RBG shall use an approved randomness source; 1830
unapproved RBGs may use unapproved randomness sources. However, multiple RBGs 1831
shall not use the same outputs from a given randomness source. 1832

• The combined RBG has a claimed security strength equal to the highest security strength 1833
provided by any approved component RBG. Note that if one of the approved 1834
component RBGs is an NRBG, then the combined RBG can support any security 1835
strength when the entropy source of the NRBG is operating correctly. In this case, 1836
output from the combined RBG may be used in exactly the same way as the output of 1837
any approved NRBG. If the entropy source within an approved NRBG fails without 1838
detection, and no other approved NRBG is used within the combined RBG, then the 1839

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 55

security strength of the combined RBG is reduced to the security strength of the 1840
approved DRBG within the combined RBG that has the highest security strength. For 1841
example, if a combined RBG consists of an approved NRBG and a non-approved 1842
DRBG, then if the entropy source within the NRBG fails without detection, the security 1843
strength of the combined RBG is reduced to the security strength of the DRBG 1844
mechanism within the NRBG. 1845

• The combined RBG is capable of supporting prediction resistance and full entropy 1846
requests if either: 1847

o One of its approved component RBGs is an NRBG, or 1848

o One of its approved component RBGs with the same security strength as the 1849
combined RBG supports prediction resistance (i.e., a Live Entropy Source is 1850
available) and uses the Get_entropy_input construction in Section 10.1.2. 1851

The following convention is used to specify a combined RBG: If a component RBG cannot 1852
support one or more of the input parameters, those parameters are omitted from the function 1853
call. For example, if a given DRBG, R, does not support the requested_security_strength, 1854
additional_input and prediction_resistance_request parameters in its generate function, then 1855
the pseudocode of 1856

(status, returned_bits) = Generate_function(requested_number_of_bits, 1857
requested_security_strength, prediction_resistance_request, additional_input) 1858

may be substituted by 1859

(status, returned_bits) = Generate_function(requested_number_of_bits). 1860

for that DRBG. 1861

Note that all approved NRBGs have DRBG mechanisms. 1862

11.2.2 Combined RBG Instantiation 1863

Let highest_DRBG_security_strengthi be the highest possible security strength for Ri, and let 1864
N be the number of RBGs in the combined RBG. 1865

Let MakeNextNonce be a method for creating a value that is of a fixed-length that shall not 1866
repeat during the lifetime of the combined RBG. Note that an RBG shall not be used to provide 1867
this nonce, since there is a (very small) probability that values could repeat. 1868

Instantiation can be summarized by the following: 1869

Combined_Instantiate: 1870

Input: integer (requested_instantiation_security_strength, prediction_resistance_flag), 1871
string personalization_string. 1872

Output: string status, integer(state_handle1,…state_handleN). 1873

Process: 1874
1. For i = 1 to N 1875

1.1 If (Ri supports a personalization string), then 1876

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 56

1.1.1 nonce = MakeNextNonce(). Comment: Use a nonce to create a 1877
unique personalization_string for 1878
each DRBG mechanism that can 1879
use it. 1880

1.1.2 modified_personalization_string = nonce || personalization_string. 1881

Comment: Note that the length of 1882
the 1883
modified_personalization_string 1884
shall not exceed the maximum 1885
allowed length of the 1886
personalization string for Ri. 1887

1.2 If Ri is an approved NRBG, then 1888

1.2.1 If Ri supports a personalizalization string, then 1889

(status, state_handlei) = NRBG_Instantiate 1890
(modified_personalization_string). 1891

Else (status, state_handlei) = NRBG_Instantiate (). 1892

1.2.2 If status indicates an error, then return the status, and a Null string for 1893
each expected state_handle. 1894

1.3 If Ri is an approved DRBG, then 1895

1.3.1 If Ri supports a personalization string, then 1896

(status, state_handlei) = 1897
Instantiate_function(requested_instantiation_security_strength, 1898
prediction_resistance_flag, modified_personalization_string). 1899

Else Instantiate_function(requested_instantiation_security_strength, 1900
prediction_resistance_flag). 1901

1.3.2 If status indicates an error, then return status and a Null string as the 1902
state_handle for each expected state_handle. 1903

Note: Instantiate the DRBG mechanism with the parameters that are provided 1904
in the Combined_Instantiate call that are supported for the instantiation of 1905
the DRBG. The prediction_resistance_request_flag shall be present in step 1906
1.3.1 and set to TRUE if prediction resistance will be requested in the 1907
Generate_function request. 1908

1.4. If Ri is not an approved RBG, and Ri contains a DRBG mechanism, then 1909

1.4.1 Instantiate the unapproved DRBG(s) with any implemented parameters 1910
that are provided in the Combined_Instantiate call that are supported 1911
by the DRBG. If a personalization_string can be used, let the 1912
personalization string provided to the DRBG be 1913
modified_personalization_string. Set state_handlei equal to the 1914
returned state handle, if appropriate; otherwise, set state_handlei equal 1915
to a value that indicates that there is no state handle. 1916

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 57

1.4.2 If an error is indicated, return the error indicator as the status, and a Null 1917
string for each expected state_handle. 1918

Else: 1919

1.4.3 Instantiate the unapproved DRBG with any implemented parameters 1920
that are provided in the Combined_Instantiate call that are supported. 1921
Obtain a state_handle, if appropriate. 1922

1.4.4 If an error is indicated, return an error indicator as the status, and a Null 1923
string for each expected state_handle. 1924

2. Return SUCCESS and any state handles. 1925

Note that if an unapproved RBG does not have a DRBG mechanism, instantiation is not 1926
performed for that RBG. 1927

The prediction_resistance_flag and personalization_string input parameters are optional in the 1928
Combined_Instantiate call; however, if either one or both are provided, they shall be passed 1929
to any component RBG that supports their use. 1930

The following requirement applies to the instantiation of DRBG mechanisms in this 1931
construction: 1932

• Each component DRBG shall be provided with a different bitstring containing entropy; 1933
the bitstrings may be obtained from the same or different randomness sources, but 1934
multiple component DRBGs shall not use any portion of the same bitstring (e.g., if the 1935
randomness source provides a very long bitstring from which multiple DRBG are 1936
assigned subsets of bits for instantiation, then the subsets shall be disjoint). The length 1937
of the bitstring used by each DRBG shall be less than or equal to the maximum length 1938
allowed for that DRBG mechanism and shall contain sufficient entropy for the DRBG’s 1939
security strength. 1940

11.2.3 Combined RBG Reseeding 1941

Each DRBG mechanism component of an RBG may be reseeded independently at any time, 1942
and may control its own reseeding. However, if the consuming application requests a reseed, 1943
this shall be performed on all component DRBG mechanisms capable of being reseeded as 1944
follows: 1945

Combined_Reseed: 1946
Input: integer(state_handle1, …, state_handleN, 1947

prediction_resistance_request), string additional_input. 1948

Output: string status. 1949

Process: 1950
1. For i = 1 to N 1951

1.1 If Ri is an approved NRBG 1952

1.1.1 status = NRBG_Reseed(state_handlei, additional_input). 1953

1.1.2. If status indicates an error, then return (status). 1954

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 58

1.2 If Ri is an approved DRBG 1955

1.2.1 status = Reseed_function(state_handlei, 1956
prediction_resistance_request, additional_input). 1957

1.2.2. If status indicates an error, then return (status). 1958

Note: Reseed the DRBG mechanism with prediction resistance and 1959
additional_input if these parameters are supported. 1960

1.3 If Ri is not an approved RBG, and Ri contains a DRBG mechanism 1961

1.3.1 Reseed the DRBG with prediction resistance and additional_input if 1962
these parameters and the reseed function are supported, using the 1963
appropriate state_handle, if supported. 1964

1.3.2. If an error is indicated, then return the error indicator as the status. 1965

2. Return (SUCCESS). 1966

Note that an unapproved RBG that does not contain a DRBG mechanism will not be reseeded. 1967

11.2.4 Combined RBG Generation 1968

The combined RBG generate function is as follows: 1969

Combined_Generate: 1970
Input: integer(state_handle1, …, state_handleN, requested_number_of_bits, 1971

requested_security_strength, prediction_resistance_request), string 1972
additional_input. 1973

Output: string status, bitstring returned_bits. 1974

Process: 1975
1. If prediction resistance is requested, and prediction resistance is not supported by 1976

any approved RBG within the combined RBG, then return an error indicator as the 1977
status, and a Null string as the returned_bits. 1978

2. tmp = 0requested_number_of_bits. 1979

3. For i = 1 to N 1980

3.1 If Ri is an approved NRBG: 1981

3.1.1 (status, returned_bits) = NRBG_Generate(state_handlei, 1982
requested_number_of_bits, additional_input). 1983

3.1.2 If status indicates an error, return (status, Null). 1984

3.2 If Ri is an approved DRBG: 1985

3.2.1 (status, returned_bits) = Generate_function(state_handlei, 1986
requested_number_of_bits, requested_security_strength, 1987
prediction_resistance_request, additional_input). 1988

Note: Generate bits using the approved DRBG with the parameters 1989
provided in the Combined_Generate call that are supported. 1990

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 59

3.2.2 If status indicates an error, return (status, Null). 1991

3.3 If Ri is not an approved RBG: 1992

3.3.1 Generate the requested number of bits using the unapproved DRBG 1993
with the parameters provided in the Combined_Instantiate call that 1994
are supported. Let status be the returned status, and returned_bits be 1995
the returned bits. 1996

3.3.2 If status indicates an error, return (status, Null). 1997

3.4. tmp = tmp ⊕ returned_bits. 1998

4. Return SUCCESS, tmp. 1999

No intermediate values for tmp or outputs of individual RBGs used to generate this combined 2000
output shall be accessible from outside the boundary or sub-boundary of the combined RBG. 2001

2002

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 60

12 Testing 2003

Two types of testing are specified in this Recommendation that may be performed on an RBG: 2004
health testing and implementation-validation testing. Health testing shall be performed on all 2005
RBGs that claim conformance with this Recommendation (see Section 12.1). Section 12.2 2006
provides information on implementation validation. 2007

12.1 Health Testing 2008

Health testing is the testing of an implementation prior to and during normal operation (e.g., 2009
periodically) to determine that the implementation continues to perform as expected and as 2010
validated. Health testing is performed by the RBG itself, i.e., the tests are designed into the 2011
RBG implementation. Two types of tests shall be performed: behavior tests and known-answer 2012
tests. 2013

• Behavior tests are statistical tests that are performed on the parts of an implementation 2014
for which an exact response cannot be predicted. These tests are conducted at startup 2015
and continuously thereafter. Such tests are specified in SP 800-90B for noise sources. 2016

• Known-answer tests are performed on the deterministic parts of an implementation (e.g., 2017
on an encoded algorithm) and are appropriate for the DRBG mechanisms in SP 800-2018
90A, on the RBG constructions in SP 800-90C, and may be appropriate for deterministic 2019
components within SP 800-90B. 2020

The deterministic components of an RBG are normally less likely to fail than the components 2021
for which behavior testing is required. Therefore, known-answer tests may be performed less 2022
frequently than behavior tests. 2023

An RBG shall support the health tests specified in SP 800-90A and SP 800-90B, as well as 2024
performing health tests on the components of SP 800-90C and the RBG as a whole. SP 800-2025
90A specifies the use of known-answer tests, and SP 800-90B specifies the use of both behavior 2026
and known-answer tests. 2027

The strategy for testing the RBG as a whole is to test the layers of components recursively, 2028
using known-answer tests, where appropriate, in order to verify the correct operation of the 2029
parts of the RBG that are not simply components from SP 800-90A or SP 800-90B. 2030

12.1.1 Testing RBG Components 2031

Whenever an RBG receives a request to startup, or receives a specific request to perform health 2032
testing, a request for health testing shall be issued to any DRBG component or randomness-2033
source component within the device receiving the request (e.g., within the sub-boundary 2034
receiving the testing request). 2035

When the randomness source consists of a chain of RBGs within a single device: 2036

• If the previous RBGs in the chain are not tested separately, then the health test request 2037
shall completely test all RBGs in the chain, triggering health tests of all the accessible 2038
RBGs that constitute the randomness source4. 2039

4 When the RBG boundaries for the chain of RBGs are distributed, it may not be feasible to test all RBGs in

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 61

• Any higher-level RBGs in the chain that are tested separately from this test should 2040
provide an indication of testing success or failure to subsequent RBGs in the chain. 2041

• The entropy source for the target RBG (or the initial RBG in the chain of RBGs) shall 2042
also be given a health test request as soon as it is available. 2043

The results of the tests should propagate down to the target RBG. If any component of the RBG 2044
(or chain of RBGs) fails a health test, then the target RBG fails the health test. 2045

12.1.2 Known-Answer Testing for SP 800-90C Components 2046

Known-answer tests shall be performed on constructions used by an implementation prior to 2047
the first use of the RBG after startup. A known-answer test shall be performed on each 2048
implemented construction, or on logical sets of constructions. When a construction is grouped 2049
with different subsets of other constructions, each such group shall be tested. For example, if 2050
construction A is used with construction B to execute one process, and with constructions B 2051
and C to execute a different process, then all components of each set of constructions shall be 2052
tested. 2053

12.1.3 Handling Failure 2054

When a failure is detected in an RBG component and reported to the RBG-as-a whole, the RBG 2055
shall enter an error state. For example, if the entropy source reports that an unrecoverable error 2056
has occurred in the noise source, the RBG needs to enter an error state. 2057

SP 800-90A and SP 800-90B discuss the error handling of DRBG mechanisms and entropy 2058
sources, respectively. The consuming application for the RBG shall be informed when the RBG 2059
enters an error state; it is the responsibility of the consuming application to handle the error 2060
(e.g., by requesting further guidance from the user or preventing further random bit generation 2061
requests). 2062

12.2 Implementation Validation 2063

Implementation validation is the process of verifying that an RBG and its components fulfill 2064
the requirements of this Recommendation. An RBG is validated by: 2065

• Validating the components from SP 800-90A and SP 800-90B. 2066

• Validating the use of the constructions in SP 800-90C via code inspection or known-2067
answer tests or both, as appropriate. 2068

• Using known-answer tests to validate the integer/bit conversion routines in SP 800-90A. 2069

• Validating that the appropriate documentation as specified in SP 800-90C has been 2070
provided (see below). 2071

Documentation shall be developed that will provide assurance to users and testers that an RBG 2072
that claims conformance to this Recommendation has been implemented correctly. This 2073
documentation shall include the following as a minimum: 2074

the chain.

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 62

• An identification of the construction(s) and components used for the RBG, including a 2075
diagram of the interaction of these construction(s) and components. 2076

• Appropriate documentation as specified in SP 800-90A and SP 800-90B; if either the 2077
DRBG mechanism or the entropy source has been validated for conformance to SP 800-2078
90A or SP 800-90B, respectively, the appropriate validation certificate shall also be 2079
provided. 2080

• An identification of the features supported by the RBG (e.g., access to the underlying 2081
DRBG mechanism by an NRBG, etc.). 2082

• A description of the health tests performed, including an identification of the periodic 2083
intervals for performing the tests. 2084

• A description of any support functions other than health testing. 2085

• A discussion about how the integrity of the health tests will be determined subsequent 2086
to implementation validation. 2087

• A discussion about the grouping of constructions for health testing (see Section 12.1.2). 2088

• A description of the RBG components within the RBG boundary. 2089

• If the RBG is distributed, a description about how the RBG is distributed, how each 2090
distributed portion is constructed, and the secure channel that is used to transfer 2091
information between the sub-boundaries (see Section 5.1). 2092

2093

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 63

Appendix A: Diagrams of Basic RBG Configurations 2094

RBGs may be implemented in a variety of ways. Several common configurations are provided 2095
as examples below. 2096

A.1 Example Using an XOR 2097
Construction 2098

The XOR construction for an NRBG is specified 2099
in Section 9.3, and requires a DRBG mechanism 2100
and a source of full-entropy bits. 2101

The entropy source itself does not provide full-2102
entropy output, so an external conditioning 2103
function is used, say the Hash_df specified in 2104
SP 800-90A using SHA-1 as the hash function. 2105

The HMAC_DRBG specified in SP 800-90A 2106
will be used as the DRBG mechanism, with 2107
SHA-1 used as the underlying hash function for 2108
the DRBG. The DRBG will obtain its entropy 2109
input from the NRBG’s entropy source as shown 2110
in Figure A-1, i.e., the DRBG uses the NRBG’s 2111
entropy source as a Live Entropy Source. Bits 2112
with full entropy are not required for input to the 2113
DRBG, i.e., the output from the entropy source 2114
is not externally conditioned before entering the 2115
DRBG. 2116

As specified in Section 9.3, the DRBG must be 2117
instantiated (and reseeded) at the highest security strength possible for the implemented DRBG 2118
mechanism. Since SHA-1 will be used as the underlying hash function of the DRBG, the highest 2119
security strength that can be supported by the DRBG mechanism is 128 bits; see SP 800-90A 2120
for the approved security strengths that are supported for the HMAC_DRBG, and SP 800-57, 2121
Part 1 for the security strengths provided by hash functions used for random number generation. 2122
Therefore, the DRBG will be instantiated and reseeded at a 128-bit security strength. 2123

Calls are made to the NRBG using the NRBG calls specified in Section 7.3. For this example, 2124
all components are contained within a single RBG boundary. 2125

The DRBG mechanism itself can be accessed directly using the same instantiation employed 2126
for NRBG calls, using the NRBG_DRBG_Generate call specified in Section 7.3. Since the 2127
NRBG’s Live Entropy Source is always available, the DRBG can support prediction resistance. 2128

If the entropy source produces output at a slow rate, a consuming application might call the 2129
NRBG only when full entropy bits are required, obtaining all other output directly from the 2130
NRBG’s DRBG. 2131

This example provides the following capabilities: 2132

• Full entropy output by the NRBG, 2133

Figure A-1: XOR-NRBG Construction Example

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 64

• Fallback to the security strength provided by the DRBG (128 bits) if the entropy source 2134
has an undetected failure, 2135

• Direct access to the NRBG’s DRBG for faster output, 2136

• DRBG instantiated at a security strength of 128 bits, 2137

• Access to a Live Entropy Source to instantiate and reseed the DRBG, and 2138

• Prediction resistance support for the DRBG when directly accessed, but not during 2139
NRBG requests. 2140

A.1.1 NRBG Instantiation 2141

NRBG instantiation includes the instantiation of the DRBG in the XOR construction (see 2142
Section 9.3.1). The NRBG_ Instantiate construction is: 2143

NRBG_Instantiate: 2144
Input: bitstring prediction_resistance_flag, personalization_string. 2145

Output: integer status. 2146

Process: 2147
Comment: The Instantiate_function is specified in SP 2148
800-90A. 2149

1. status = Instantiate_function(128, prediction_resistance_flag = TRUE, 2150
personalization_string). 2151

2. Return status. 2152

Note that in step 1, the requested_security_strength parameter has been set to 128 bits, and that 2153
a state_handle is not returned for this example, since only a single DRBG instantiation will be 2154
available. Since prediction resistance will be supported by the DRBG when directly accessed, 2155
the prediction_resistance_flag is set to TRUE. During the Instantiate_function call, a 2156
Get_entropy_input call will be invoked to obtain entropy bits to instantiate the DRBG 2157
mechanism. The Get_entropy_input call is fulfilled using the construction in Section 10.3.3.3 2158
using Hash_df and SHA-1. 2159

The Get_entropy_input call within the Instantiate_function is: 2160

(status, returned_bits) = Get_entropy_input(128, 512). 2161

This call sets the values of min_entropy to 128 bits, and max_length to 512 bits. 2162

Note that the status returned from the Instantiate_function is passed to the consuming 2163
application in this example. 2164

A.1.2 NRBG Generation 2165

The NRBG can be called by a consuming application to generate output with full entropy. The 2166
construction in Section 9.3.2 is used as follows: 2167

NRBG_Generate: 2168

Input: integer n, string additional_input. 2169

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 65

Output: integer status, bitstring returned_bits. 2170

Process: 2171
Comment: For step 1, use the construction in Section 2172
10.3.3.3 to obtain and condition the entropy-source output 2173
for full entropy. 2174

1. (status, entropy_bitstring) = Get_entropy_input(n, n). 2175

2 If (status ≠ SUCCESS), then return status, Null. 2176

Comment: For step 3, the Generate_function is specified 2177
in SP 800-90A. 2178

3. (status, drbg_bits) = Generate_function(n, 128, prediction_resistance_request = 2179
FALSE, additional_input). 2180

4. If (status ≠ SUCCESS), then return status, Null. 2181

5. returned_bits = entropy_bitstring ⊕ drbg_bits. 2182

6. Return SUCCESS, returned_bits. 2183

Note that the state_handle parameter is not used in the NRBG_Generate call or the 2184
Generate_function call (in step 3), since a state_handle was not returned from the NRBG_ 2185
Instantiate function (see Appendix A.1.1). 2186

In step 1, the entropy source is accessed using the Get_entropy_input routine specified in 2187
Section 10.3.3.3 to obtain n bits with full entropy. 2188

Step 2 checks that the Get_entropy-input call in step 1 was successful; if not, the 2189
NRBG_Generate function is aborted, returning the received status code to the consuming 2190
application, along with a Null string as the returned_bits. 2191

Step 3 calls the DRBG mechanism to generate bits to be XORed with the output of the entropy 2192
source in order to produce the NRBG output. Note that a request for prediction resistance is not 2193
made in the Generate_function call (see Section 9.3.2). 2194

Step 4 performs the same checks as step 2. 2195

In step 5, the entropy_bitstring returned in step 1, and the drbg_bits obtained in step 3 are 2196
XORed together, and the result returned to the consuming application (step 6). 2197

A.1.3 Direct DRBG Generation 2198

The NRBG’s DRBG mechanism can be directly accessed by a consuming application using the 2199
NRBG_DRBG_Generate call specified in Section 7.3. For this example, the 2200
NRBG_DRBG_Generate function is as follows: 2201

NRBG_DRBG_Generate: 2202
Input: integer (n, security_strength, prediction_resistance_request), bitstring 2203

(additional_input). 2204

Output: integer status, bitstring returned_bits. 2205

Process: 2206

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 66

1. (status, returned_bits) = Generate_function(n, security_strength, 2207
prediction_resistance_request, additional_input). 2208

2. Return status, returned_bits. 2209

Note that the state_handle parameter is not used in this example. A request for prediction 2210
resistance is optional, and the NRBG’s entropy source is the randomness source for any 2211
prediction resistance request. The security_strength parameter must be less than or equal to 128, 2212
for this example. 2213

If prediction resistance is requested, the Generate_function calls a Reseed_function (see 2214
Appendix A.1.4). 2215

A.1.4 DRBG Reseeding 2216

The DRBG must be reseeded at the end of its designed reseed interval, whenever prediction 2217
resistance is requested during direct DRBG generate requests (see Appendix A.1.3) and may be 2218
reseeded on request (e.g., by the consuming application). Reseeding will be automatic whenever 2219
the end of the DRBG’s reseed is reached during a Generate_function call and when prediction 2220
resistance is requested for the Generate_function (see the Generate_function specification in 2221
SP 800-90A). For this example, whether reseeding is done automatically during a 2222
Generate_function call, or is specifically requested by a consuming application, the 2223
Reseed_function call is: 2224

status = Reseed_function(additional_input). 2225

The Reseed_function is specified in SP 800-90A. Note that the state_handle parameter is not 2226
used in this example, and the DRBG’s entropy source for this example is used as the randomness 2227
source. The prediction_resistance_request parameter is not included as an input parameter of 2228
the Reseed_function for this example, since the entropy source will provide fresh entropy by 2229
definition. 2230

The Reseed_function uses a Get_entropy_input call to obtain entropy bits from the entropy 2231
source. The Get_entropy_input call is fulfilled using the construction in Section 10.3.3.3. The 2232
Get_entropy_input call within the Reseed_function is the same as that used for instantiation 2233
(see Appendix A.1.1). 2234

 A.2 Example Using an Oversampling Construction 2235

The NRBG Oversampling construction is specified in Section 9.4, and requires an entropy 2236
source and a DRBG mechanism (see the left half of Figure A-2). A separate instantiation of the 2237
same DRBG mechanism will be used for direct DRBG access (see the right half of Figure A-2238
2); this instantiation is, in effect, a separate DRBG. 2239

The CTR_DRBG specified in SP 800-90A will be used as the DRBG mechanism, with AES-2240
256 used as the underlying block cipher for the DRBG. The DRBG mechanism will use the 2241
block-cipher derivation function in SP 800-90A. The entire NRBG is contained within a single 2242
cryptographic module. 2243

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 67

As specified in Section 9.4, a DRBG used 2244
as part of the NRBG must be instantiated 2245
(and reseeded) at the highest security 2246
strength possible for the implemented 2247
DRBG mechanism. Since AES-256 will be 2248
used as the underlying block cipher, the 2249
highest security strength that can be 2250
supported by the DRBG mechanism is 256 2251
bits. Therefore, the DRBG instantiation 2252
used in the NRBG construction will be 2253
instantiated and reseeded at a 256-bit 2254
security strength. 2255

The DRBG instantiation used for direct 2256
DRBG access will be instantiated at a 2257
security strength of 256 bits (the same as 2258
the DRBG instantiation used as part of the 2259
NRBG) using the entropy source within the 2260
NRBG as the randomness source. Note that 2261
other examples could select a different 2262
security strength for this DRBG 2263
instantiation and a different randomness source. 2264

Calls are made to the NRBG using the NRBG calls specified in Section 7.3. Calls made to the 2265
directly accessible DRBG use the DRBG calls specified in Section 7.2. 2266

The NRBG’s DRBG supports prediction resistance by design (see Section 9.4). For this 2267
example, since a Live Entropy Source is always available, the directly accessed DRBG will also 2268
support prediction resistance. 2269

As in the case of the XOR example in Appendix A.1, if the entropy source produces output at 2270
a slow rate, a consuming application might call the NRBG only when full entropy bits are 2271
required, obtaining all other output from the directly accessed DRBG. 2272

This example provides the following capabilities: 2273

• Full entropy output by the NRBG, 2274

• Fallback to the security strength of the NRBG’s DRBG (256 bits) if the entropy source 2275
has an undetected failure, 2276

• Direct access to a DRBG for faster output, 2277

• Both DRBGs instantiated at a security strength of 256 bits, 2278

• Access to a Live Entropy Source to instantiate and reseed both DRBG instantiations, 2279
and 2280

• Prediction resistance support for the directly accessed DRBG5. 2281

5 Note that the prediction resistance provided by the NRBG’s DRBG is not specifically listed, since it is

Figure A-2: NRBG Oversampling
Construction Example

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 68

A.2.1 NRBG Instantiation 2282

NRBG instantiation includes the instantiation of the DRBG in the NRBG construction (see 2283
Section 9.4.1). For this example, the DRBG mechanism will be instantiated twice: once for its 2284
use in the NRBG, and once for its use as a DRBG that is directly accessible using the DRBG 2285
calls in Section 7.2. If a success is not returned from either instantiation request, an invalid state 2286
handle (i.e., −1) will be returned. Note that the construction in Section 9.4.1 has been used as 2287
the basis for the following modified construction. 2288

The Modified_NRBG_Instantiate construction is: 2289

Modified_NRBG_Instantiate: 2290
Input: bitstring personalization_string. 2291

Output: integer status, integer NRBG_state_handle, DRBG_state_handle. 2292

Process: 2293
Comment: For step 1, NRBG_state_handle is the DRBG state 2294
handle when the DRBG mechanism is used as a component of 2295
the NRBG (i.e., the DRBG instantiation is not called directly by 2296
a consuming application using DRBG calls). 2297

1. (status, NRBG_state_handle) = Instantiate_function(256, 2298
prediction_resistance_flag = TRUE, “NRBG” || personalization_string). 2299

2. If (status ≠ SUCCESS), then return (status, −1, −1). 2300

Comment: For step 3, DRBG_state_handle is the DRBG state 2301
handle when the DRBG instantiation is accessed using DRBG 2302
calls by a consuming application. 2303

3. (status, DRBG_state_handle) = Instantiate_function(256, 2304
prediction_resistance_flag = TRUE, “DRBG” || personalization_string). 2305

4. If (status ≠ SUCCESS), then return (status, −1, −1). 2306

5. Return SUCCESS, NRBG_state_handle, DRBG_state_handle. 2307

Note that the requested_security_strength parameter has been set to 256 bits for both DRBG 2308
instantiations, and a different string has been prepended to the personalization string to make 2309
them different for each instantiation (see steps 1 and 3). If there are no errors, and the entropy 2310
bits are available (as checked in steps 2 and 4), two different state handles are returned from the 2311
Instantiate_function calls. Also, since prediction resistance will be used during 2312
NRBG_Generate calls (see Section 9.4.1) and will be supported during direct accesses of the 2313
DRBG, the prediction_resistance_flag is set to TRUE during both Instantiate_function calls, 2314
rather than provided as input during the Modified_NRBG_Instantiate call. The 2315
Instantiate_function is specified in SP 800-90A. 2316

included by design in bullet 1.

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 69

During the Instantiate_function calls, a Get_entropy_input call will be invoked to obtain 2317
entropy bits to instantiate the DRBG mechanism. The Get_entropy_input call is: 2318

 (status, returned_bits) = Get_entropy_input (256, 512), 2319

which is fulfilled using the construction in Section 10.3.3.1. In this call, the min_entropy 2320
parameter is set to 256; the max_length parameter is set to an implementation-dependent value, 2321
say 512 for this example; and the prediction_resistance_request parameter is not used in this 2322
example, because the entropy source provides fresh entropy bits by design. 2323

A.2.2 NRBG Generation 2324

The NRBG can be called by a consuming application to generate output with full entropy. The 2325
construction in Section 9.4.2 is used: 2326

NRBG_Generate: 2327

Input: integer (state_handle, n), string additional_input. 2328

Output: integer status, bitstring returned_bits. 2329

Process: 2330
1. returned_bits =Null. 2331

2. sum = 0. 2332

3. While (sum < n) 2333

3.1 (status, tmp) = Generate_function(NRBG_state_handle, 128, 256, 2334
prediction_resistance_request = TRUE, additional_input). 2335

3.2 If (status ≠ SUCCESS), then return status, Null. 2336

3.3 returned_bits = returned_bits || tmp. 2337

3.4 sum = sum + 128. 2338

4. Return SUCCESS and leftmost(returned_bits, n). 2339

For this example, the NRBG’s DRBG has been instantiated at 256 bits (see Appendix A.2.1); 2340
therefore, the security strength s = 256. Step 3.1 requests that the NRBG generate 128 bits (i.e., 2341
s/2 bits) at a security strength of 256 bits with prediction resistance; this will result in 128 bits 2342
of full-entropy output for each Generate_function call (see Sections 5.2 and 9.4.2). Note that 2343
the value of the state handle returned during the instantiation of the NRBG’s DRBG 2344
instantiation is used in the Generate_function call, not the state handle that can be used by a 2345
consuming application to make calls directly to the DRBG. 2346

During each execution of the Generate_function (i.e., for each 128-bit block of output 2347
produced by the Generate_function), the entropy source will be requested using the 2348
Get_entropy_input construction in Section 10.3.3.1. 2349

A.2.3 Direct DRBG Generation 2350

The DRBG instantiation used for direct access can be accessed by a consuming application 2351
using the Generate_function call specified in Section 7.2 as follows: 2352

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 70

(status, returned_bits) = Generate_function(DRBG_state_handle, n, security_strength, 2353
prediction_resistance_request, additional_input). 2354

Note that the DRBG_state_handle parameter is the value returned during instantiation for direct 2355
access of the DRBG mechanism by a consuming application (see Appendix A.2.1). A request 2356
for prediction resistance is optional, and the NRBG’s entropy source is the randomness source 2357
for any prediction resistance request. The security_strength parameter must be less than or equal 2358
to 256 for this example. 2359

When prediction resistance is requested in the Generate_function call, a single 2360
Reseed_function request will be made to the entropy source to produce a bitstring containing 2361
at least 256 bits of entropy (i.e., the security strength of the directly accessed DRBG), regardless 2362
of the number of bits (n) requested from the DRBG by the consuming application. This request 2363
is discussed in Appendix A.2.4. 2364

A.2.4 Direct DRBG Reseeding 2365

The DRBG instantiation that is directly accessible by a consuming application will be reseeded 2366
1) if explicitly requested by the consuming application, 2) automatically whenever a generation 2367
with prediction resistance is requested during a direct access of the DRBG, or 3) automatically 2368
during a Generate_function call at the end of the DRBG’s designed reseed_interval (see the 2369
Generate_function specification in SP 800-90A). The Reseed_function call is: 2370

status = Reseed_function(DRBG_state_handle, additional_input). 2371

Note the specification of the DRBG_state_handle. The Reseed_function uses the 2372
Get_entropy_input call specified in Section 10.3.3.1. 2373

The prediction_resistance_request parameter is omitted in the Reseed_function call for this 2374
example, since the randomness source is an entropy source. 2375

A.3 Example Using a DRBG without a Randomness Source 2376

A DRBG may have access to a randomness source only during instantiation (e.g., the DRBG 2377
will not have access to a Live Entropy Source or a source RBG during normal operation). For 2378
example, this will often be the case for smart card applications. In this case, the DRBG is seeded 2379
only once (i.e., reseeding is not possible). 2380

For this example, the DRBG is distributed into two cryptographic modules, with a secure 2381
channel connecting them during the instantiation process; following DRBG instantiation, the 2382
secure channel is not available. The randomness source is an approved entropy source, no 2383
external conditioning function is used, and only a single DRBG instantiation will be used (see 2384
Figure A-3). 2385

The DRBG will be instantiated at a security_strength of 256 bits, so a DRBG mechanism that 2386
is able to support this security strength must be used (e.g., HMAC_DRBG using SHA-256). A 2387
personalization_string will not be used. Since a randomness source is not available during 2388
normal operation, reseeding and prediction resistance cannot be provided. 2389

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 71

 This example provides the following capability: 2390

• A DRBG instantiated at a security strength of 2391
256 bits. 2392

A.3.1 DRBG Instantiation 2393

The DRBG is instantiated as specified in SP 800-90A 2394
using the following call: 2395

status = Instantiate_function (256). 2396

Note that since there will be only a single instantiation, 2397
a state_handle will not be returned for this example. In 2398
addition, a prediction_resistance_flag is not included, 2399
since a Live Entropy Source is not available after 2400
instantiation, so prediction resistance cannot be 2401
provided. 2402

The Instantiate_function’s Get_entropy_input call 2403
is fulfilled using the construction in Section 10.3.3.1. 2404

(status, returned_bits) = Get_entropy_input(256, 2405
600), 2406

This call sets the values of min_entropy to 256 bits, and 2407
max_length to 600 bits. 2408

A secure channel is required to transport the entropy 2409
bits from the entropy source to the DRBG mechanism 2410
during instantiation. Thereafter, the entropy source and secure channel are no longer available 2411
(i.e., the connection between the entropy source and the DRBG mechanism is no longer 2412
available). 2413

The status returned by the Instantiate_function should be checked; if a status of SUCCESS is 2414
not returned, then the DRBG has not been instantiated and cannot be used to generate (pseudo) 2415
random bits. 2416

A.3.2 DRBG Generation 2417

Pseudorandom bits are requested from the DRBG by a consuming application using the 2418
Generate_function call as specified in Section 7.2: 2419

(status, returned_bits) = Generate_function (requested_number_of_bits, 2420
requested_security_strength, additional_input). 2421

Since the instantiate call does not return a state_handle (see Appendix A.3.1), the state_handle 2422
parameter is not included in the generate request. The requested_security_strength may be any 2423
value that is less than or equal to 256 (the instantiated security strength). Since a Live Entropy 2424
Source will not be available, the prediction_resistance_request parameter is also omitted. 2425

A.3.3 DRBG Reseeding 2426

Since a randomness source is not available for reseeding, the DRBG must cease operation at 2427
the end of its designed reseed_interval. However, since the reseed_interval could be very long 2428

Figure A-3: DRBG Seeded Only Once

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 72

(up to 248 requests, depending on the implementation), this may not be a problem for many 2429
applications. 2430

A.4 Example Using a DRBG with a Live Entropy Source 2431

A DRBG with a Live Entropy Source can provide prediction resistance on request. The entropy 2432
source could reside in the same device as the DRBG, or could reside outside the device, with a 2433
secure channel available to transfer the requested entropy bits to the DRBG mechanism (i.e., 2434
the DRBG is distributed). 2435

For this example, assume that everything is the same as the 2436
example in Appendix A.3, except that a Live Entropy Source 2437
is available within the same cryptographic module as the 2438
DRBG mechanism. That is, the randomness source is an 2439
approved entropy source, no secure channel is required, and 2440
only a single DRBG instantiation will be used. The DRBG will 2441
be instantiated at a security_strength of 256 bits, so a DRBG 2442
mechanism that can support this security strength must be used 2443
(e.g., HMAC_DRBG using SHA-256). A 2444
personalization_string will not be used. Since a Live Entropy 2445
Source is available during normal operation, prediction 2446
resistance and reseeding are supported. Figure A-4 depicts this 2447
example. 2448

This example provides the following capabilities: 2449

• Direct access to a DRBG, 2450

• DRBG instantiated at a security strength of 256 bits, 2451

• Access to a Live Entropy Source to provide prediction 2452
resistance and reseeding, and 2453

• Full entropy output is possible. 2454

A.4.1 DRBG Instantiation 2455

The DRBG is instantiated as specified in SP 800-90A using the following call: 2456

status = Instantiate_function (256, prediction_resistance_flag). 2457

Note that since there will only be a single instantiation in this example, a state_handle will not 2458
be returned. 2459

During the Instantiate_function call, a Get_entropy_input call using the construction in 2460
Section 10.3.3.1 will be invoked to obtain entropy bits to instantiate the DRBG mechanism. The 2461
Get_entropy_input call is: 2462

 (status, returned_bits) = Get_entropy_input (256, 512). 2463

In the Get_entropy_input call, the min_entropy parameter is set to 256; the max_length 2464
parameter is set to an implementation-dependent value (i.e., 512 for this example). 2465

Figure A-4: DRBG with a

Live Entropy Source

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 73

The difference between the instantiation for this example, and the instantiation in Appendix 2466
A.3.1 is the inclusion of the prediction_resistance_flag in the Instantiate_function call. Note 2467
that a consuming application is not required to provide this parameter when calling the 2468
Instantiate_function unless prediction resistance is to be provided during normal operation 2469
when the DRBG is requested to generate bits (see Appendix A.4.2). 2470

The consuming application should check the status returned by the Instantiate_function; if an 2471
indication of success is not returned, then the DRBG has not been instantiated and cannot be 2472
used to generate (pseudo) random bits. 2473

A.4.2 DRBG Generation 2474

Since a full-entropy capability is to be provided using an entropy source with no external 2475
conditioning function, the General_DRBG_Generate function discussed in Sections 7.2.2 and 2476
10.4 will be used, i.e., 2477

(status, returned_bits) = General_DRBG_Generate(requested_number_of_bits, 2478
security_strength, full_entropy_request, prediction_resistance_request, additional input). 2479

Since the instantiate call does not return a state_handle for this example (see Appendix A.4.1), 2480
the state_handle parameter is not included in the generate request. The 2481
requested_security_strength may be any value that is less than or equal to 256. 2482

When full entropy or prediction resistance is requested, a Get_entropy_input call using the 2483
construction in Section 10.4 will be invoked to obtain entropy bits. 2484

The consuming application should check the status returned by the 2485
General_DRBG_Generate_function; if an indication of success is not returned, then the 2486
requested bits have not been returned. 2487

Note that the DRBG may need to be reseeded because of a prediction-resistance request or 2488
because of reaching the end of the DRBG’s reseed interval, as discussed in Appendix A.4.3. 2489

A.4.3 DRBG Reseeding 2490

The DRBG will be reseeded 1) if explicitly requested by the consuming application, 2) 2491
automatically whenever generation with prediction resistance is requested, or 3) automatically 2492
during a Generate_function call at the end of the DRBG’s designed reseed_interval (see the 2493
Generate_function specification in SP 800-90A). The Reseed_function call is: 2494

status = Reseed_function(additional_input). 2495

The state_handle parameter has been omitted, since it is not required for this example. Note 2496
that the prediction_resistance_request parameter is omitted in the Reseed_function call, since 2497
fresh entropy bits are obtained from the entropy source anyway. 2498

The Get_entropy_input call of the Reseed_function uses the construction in Section 10.3.3.1 2499
to obtain entropy bits. 2500

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 74

A.5 Example Using a Chain of DRBGs with a Live Entropy Source 2501

Figure A-5 displays two chains of DRBGs, each with 2502
the same randomness source (i.e., both DRBG B and 2503
DRBG C have DRBG A as a randomness source). Each 2504
DRBG mechanism is contained within a different 2505
cryptographic module, and there is only one DRBG 2506
instantiation in each module. DRBG A has a Live 2507
Entropy Source as the randomness source that provides 2508
full-entropy output, but no external conditioning 2509
function. DRBG A is connected to DRBG B and DRBG 2510
C via secure channels. This configuration might be 2511
appropriate for a large organization that centralizes its 2512
initial DRBG of the chain (DRBG A, in this case) for 2513
use by other entities within the organization (e.g., each 2514
lower-level DRBG may be in a different employee’s 2515
laptop). 2516

The DRBGs may be implemented using the same or 2517
different DRBG mechanisms. This might be the case if 2518
the DRBGs are developed by different vendors. For 2519
simplicity in this example, the DRBG mechanisms are 2520
not shown. 2521

For this example, DRBG A will be instantiated at a security strength of 128 bits and can provide 2522
prediction resistance when requested because a Live Entropy Source is always available. DRBG 2523
A will not be capable of handling a personalization_string. 2524

DRBG B will be instantiated at a security strength of 128 bits, and DRBG C will be instantiated 2525
at a security strength of 256 bits; each will be capable of handling a personization_string. Each 2526
of the DRBG mechanisms (i.e., DRBGs A, B and C) allow a maximum of 512 bits to be input 2527
during a Get_entropy_input call (i.e., the max_length input parameter of the 2528
Get_entropy_input call must be less than or equal to 512). 2529

This example provides the following capabilities: 2530

• Direct access to each DRBG, 2531

• DRBG A (the source DRBG) is instantiated at a security strength of 128 bits, 2532

• DRBG B is instantiated at a security strength of 128 bits, while DRBG C is instantiated 2533
at a security strength of 256 bits, 2534

• A Live Entropy Source is available to provide prediction resistance, and full-entropy 2535
output. 2536

A.5.1 DRBG Instantiation 2537

A.5.1.1 Instantiation of the Initial DRBG in the Chain (Source DRBG A) 2538
For this example, DRBG A will be instantiated at a security strength of 128 bits using the 2539
following call (see SP 800-90A): 2540

Figure A-5: Chain of DRBGs with a
Live Entropy Source

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 75

status = Instantiate_function (128, prediction_resistance_flag = TRUE). 2541

Note that since there will only be a single instantiation, a state_handle will not be returned. The 2542
prediction_resistance_flag is set to TRUE to allow calls to DRBG A for prediction resistance 2543
(e.g., from DRBG B or C)). Also, note that there is no personalization_string parameter for this 2544
DRBG, as stated in Appendix A.5. 2545

During the Instantiate_function call for this example, a Get_entropy_input call is fulfilled 2546
using the construction in Section 10.3.3.1 . The Get_entropy_input call is: 2547

 (status, returned_bits) = Get_entropy_input (128, 512). 2548

In this call, the min_entropy parameter is set to 128, and the prediction_resistance_request 2549
parameter is omitted, since the entropy source is used directly. 2550

The consuming application should check that the status returned by the Instantiate_function; 2551
if a status code of SUCCESS is not returned, then DRBG A has not been instantiated and cannot 2552
be used to generate random output (e.g., to service requests from DRBG B and DRBG C). 2553

A.5.1.2 Instantiation of DRBG B 2554
DRBG B is instantiated using the Instantiate_function call specified in SP 800-90A. The 2555
Instantiate_function call for requesting a security strength of 128 bits for DRBG B is: 2556

status = Instantiate_function (128, prediction_resistance_flag, personalization_string). 2557

Since only one DRBG instantiation is to be available in the device, the return of a state_handle 2558
is not required and has been omitted from the call. 2559

During the instantiation of DRBG B, a request for output from DRBG A is made using a 2560
Get_entropy_input call in the Instantiate_function. 2561

(status, entropy_input) = Get_entropy_input(128, 128, 512, 2562
prediction_resistance_request =TRUE). 2563

Since DRBG B is to be instantiated at the same security strength as DRBG A, the 2564
Get_entropy_input function can be implemented using either the construction in Section 2565
10.1.1 or 10.1.2. In either case, the request for prediction resistance is optional, but for this 2566
example, prediction resistance is requested for instantiation. 2567

Note that an implementation might combine the min_entropy and min_length parameters into a 2568
single parameter: the security_strength. 2569

Upon receipt of this request from DRBG B, DRBG A generates output as discussed in Appendix 2570
A.5.2.1. 2571

The consuming application should check the status returned by the Instantiate_function; if a 2572
status of SUCCESS is not returned, then DRBG B has not been instantiated and cannot generate 2573
(pseudo) random bits. 2574

A.5.1.3 Instantiation of DRBG C 2575
DRBG C is instantiated in the same manner as DRBG B, except that a security strength of 256 2576
bits is required. The Instantiate_function call is: 2577

status = Instantiate_function (256, prediction_resistance_flag, personalization_string). 2578

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 76

Again, since only one DRBG instantiation is to be available in the device, the return of a 2579
state_handle is not required and has been omitted from the call. 2580

The Get_entropy_input call in DRBG C’s Instantiate_function in this case is: 2581

(status, entropy_input) = Get_entropy_input(256, 256, 512, prediction_resistance_request = 2582
TRUE), 2583

which requires the use of the Get_entropy_input construction in Section 10.1.2, since DRBG 2584
C is instantiating at a higher security strength than that of DRBG A. 2585

DRBG A’s handling of the received request is discussed in Appendix A.5.2.1. 2586

The consuming application should check that the status returned by the Instantiate_function; 2587
if a status of SUCCESS is not returned, then DRBG C has not been instantiated and cannot be 2588
used to generate (pseudo) random bits. 2589

A.5.2 DRBG Generation 2590

A.5.2.1 Generate Requests to DRBG A from a Subsequent DRBG in a Chain 2591
Generate requests to DRBG A are made by the subsequent DRBGs in the chain (i.e., DRBGs B 2592
and C) during instantiation or reseeding using the Get_entropy_input construction used in 2593
Appendix A.5.1.2 and A.5.1.3. A generate request is sent to DRBG A in the form of a 2594
Generate_function call, which will indicate the security strength to be used, the minimum and 2595
maximum length of the bitstring to be returned, and possibly a request for prediction resistance. 2596
As specified in SP 800-90A, when prediction resistance is requested, DRBG A reseeds itself by 2597
requesting a bitstring from its entropy source containing128 bits of entropy. 2598

Generate requests may also be made directly to DRBG A by a consuming application (see 2599
Appendix A.5.2.2). 2600

The reseeding of DRBG A is discussed in Appendix A.5.3.1. 2601

A.5.2.2 Generate Requests to a DRBG by a Consuming Application 2602
Generate requests could be made directly to any of the DRBGs in the chain from a consuming 2603
application, including requests to DRBG A. Since any of the DRBGs can be requested to 2604
provide full-entropy output, the General_DRBG_Generate function discussed in Sections 2605
7.2.2 and 10.4 will be used, i.e., 2606

(status, returned_bits) = General_DRBG_Generate(requested_number_of_bits, 2607
security_strength, full_entropy_request, prediction_resistance_request, additional input). 2608

Note that even though DRBG A's entropy source provides full-entropy output, DRBG A is 2609
designed to do so only when using the appropriate construction. 2610

Since the instantiate call does not return a state_handle for this example (see Appendix A.5.1), 2611
the state_handle parameter is not included in the generate request. The 2612
requested_security_strength may be any value that is less than or equal to 256. 2613

When full entropy or prediction resistance are requested, a Get_entropy_input call using the 2614
construction in Section 10.4 will be invoked by DRBG B and DRBG C to obtain entropy bits. 2615
DRBG A will use the Get_entropy_input construction in Section 10.3.3.3, which will provide 2616
full-entropy output. 2617

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 77

The consuming application should check the status returned by the 2618
General_DRBG_Generate_function; if an indication of success is not returned, then the 2619
requested bits have not been returned. 2620

Note that the DRBG may need to be reseeded because of a prediction-resistance request or 2621
because of reaching the end of the DRBG’s reseed interval, as discussed in Appendix A.5.3. 2622

A.5.3 DRBG Reseeding 2623

A.5.3.1 Reseeding of DRBG A (the Initial DRBG of the Chain) 2624
DRBG A can be reseeded using its Reseed_function to obtain entropy bits from its Live 2625
Entropy Source. The reseed of DRBG A is initiated because of a request for bits with prediction 2626
resistance from DRBG B or DRBG C, a reseed request to DRBG A directly from a consuming 2627
application, or reaching the end of the DRBG's reseed interval during a Generate_function call 2628
from a consuming application or a subsequent DRBG of a chain). The Reseed_function call 2629
for this example is: 2630

status = Reseed_function(additional_input). 2631

The state_handle parameter has been omitted since it is not required for this example. 2632

The Reseed_function in DRBG A makes a Get_entropy_input call to obtain the entropy input 2633
for reseeding from DRBG A’s Live Entropy Source. The Get_entropy _input call is specified 2634
in Section 10.3.3.1, althought the construction in Section 10.3.3.2 or Section 10.3.3.3 could also 2635
be used. 2636

When reseeding at the request of from a consuming application, the consuming application 2637
should check the status returned by the Reseed_function; if a status of SUCCESS is not 2638
returned, then the DRBG has not been reseeded. 2639

A.5.3.2 Reseeding of a Subsequent DRBG in a Chain 2640
DRBGs B and C are reseeded by requesting output from DRBG A. The reseed process is 2641
initiated because of a reseed request to the DRBG from a consuming application, a request from 2642
the consuming application for prediction resistance during a Generate_ request, or reaching 2643
the end of the DRBG's reseed interval during a Generate_function call from a consuming 2644
application). 2645

The Reseed_function call for this example is: 2646

status = Reseed_function(prediction_resistance_request, additional_input). 2647

The state_handle parameter has been omitted since it is not required for this example. 2648

The Reseed_function makes a Get_entropy_input call to DRBG A to obtain the entropy input 2649
for reseeding. The Get_entropy_input function uses the same construction used for 2650
instantiation (see Appendix A.5.1.2 for DRBG B, and Appendix A.5.1.3 for DRBG C). 2651

If the Reseed_function is called by the consuming application, the call has the same form as 2652
above. However, the presence of a prediction_resistance_request parameter in the subsequent 2653
Get_entropy_input call depends on its presence in the Reseed_function call from the 2654
consuming application. The consuming application should check that the status returned by the 2655
Reseed_function; if a status of SUCCESS is not returned, then the DRBG has not been 2656
reseeded. 2657

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 78

If the call is initiated from within DRBG B, a request for prediction resistance is optional, 2658
since DRBG A’s security strength is the same as that of DRBG B. However, if the call is 2659
initiated from within DRBG C, a prediction-resistance request is required, since DRBG A’s 2660
security strength is less than that of DRBG C; this is handled in the Get_entropy_input 2661
routine used by DRBG C (i.e., the routine specified in Section 10.1.2). 2662

2663

NIST SP 800-90C (2ND DRAFT) RECOMMENDATION FOR RANDOM BIT
 GENERATOR (RBG) CONSTRUCTIONS

 79

Appendix B: References 2664

[FIPS 140] Federal Information Processing Standard (FIPS) 140-2, Security 2665
Requirements for Cryptographic Modules, May 2001. 2666

[FIPS 180] Federal Information Processing Standard (FIPS) 180-4, Secure Hash 2667
Standard, March 2012. 2668

[FIPS 197] Advanced Encryption Standard (AES), November 2001, available at 2669
http://csrc.nist.gov/publications/PubsFIPS.html. 2670

[FIPS 198] Federal Information Procssing Standard (FIPS) 198-1, The Keyed-Hash 2671
Message Authentication Code (HMAC), July 2008. 2672

[FIPS 202] Federal Information Processing Standard (FIPS) 202, DRAFT SHA-3 2673
Standard: Permutation-Based Hash and Extendable-Output Functions, 2674
August 2015. 2675

[SP 800-38B] NIST Special Publication (SP) 800-38B, Recommendation for Block 2676
Cipher Modes of Operation: The CMAC Mode for Authentication, May 2677
2005. 2678

[SP 800-57] NIST Special Publication (SP) 800-57, Part 1: Recommendation for Key 2679
Management: Part 1: General (Revision 3), January 2016. 2680

[SP 800-67] NIST Special Publication (SP) 800-67 Rev. 1, Recommendation for the 2681
Triple Data Encryption Algorithm (TDEA) Block Cipher, January 2012. 2682

[SP 800-90A] NIST Special Publication 800-90A, Recommendation for Random 2683
Number Generation Using Deterministic Random Bit Generators, June 2684
2015. 2685

[SP 800-90B] NIST Special Publication 800-90B, (Draft) Recommendation for the 2686
Entropy Sources Used for Random Bit Generation, January 2016. 2687

[SP 800-107] NIST Special Publication 800-107, Recommendation for Applications 2688
Using Approved Hash Algorithms, August 2012. 2689

[ANS X9.82-4] Random Number Generation - Part 4: Random Bit Generation 2690
Constructions, April 2011. 2691

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation 2692
from one-way functions. In Proceedings of the 21st Annual ACM 2693
Symposium on Theory of Computing (STOC '89), pages 12-24. ACM 2694
Press, 1989. 2695

 2696

 2697

	(2nd Draft) NIST SP 800-90C, Recommendation for Random Bit Generator (RBG) Constructions
	Table of Contents
	1 Scope
	2 Terms and Definitions
	3 Symbols and Abbreviated Terms
	4 General Discussion
	4.1 RBG Security
	4.2 Assumptions
	4.3 Constructions
	4.4 Document Organization

	5 Random Bit Generator Concepts
	5.1 RBG Boundaries and Distributed RBGs
	5.2 Full Entropy
	5.3 Entropy Sources
	5.3.1 Approved Entropy Sources
	5.3.2 Live Entropy Source Availability
	5.3.3 Using a Single Entropy Source
	5.3.4 Using Multiple Entropy Sources
	5.3.5 External Conditioning

	5.4 Prediction Resistance
	5.5 Deterministic Random Bit Generators (DRBGs)
	5.5.1 General Discussion
	5.5.2 Reseeding and Prediction Resistance
	5.5.3 Security Strength Supported by a DRBG

	5.6 Non-deterministic Random Bit Generators (NRBGs)

	6 Randomness Sources
	7 RBG Interfaces
	7.1 General Pseudocode Conventions
	7.2 DRBG Function Calls
	7.2.1 Basic DRBG Functions
	7.2.2 Additional DRBG Function

	7.3 NRBG Function Calls
	7.4 Entropy Source Calls
	7.5 Conditioning Function Calls
	7.5.1 Conditioning Functions Based on Approved Hash Functions
	7.5.2 Conditioning Functions Based on Approved Block-Cipher Algorithms

	8 DRBG Construction
	8.1 DRBG Functionality Depending on Randomness Source Availability
	8.2 DRBG Instantiation
	8.3 Generation of Output Using a DRBG
	8.4 DRBG Reseeding
	8.5 Sources of Other DRBG Inputs

	9 NRBG Constructions
	9.1 Entropy Source Access and General NRBG Operation
	9.2 The DRBG Mechanism within the NRBG
	9.3 XOR-NRBG Construction
	9.3.1 Instantiation of the DRBG used by the XOR-NRBG
	9.3.2 XOR-NRBG Generation
	9.3.3 Direct DRBG Access

	9.4 The Oversampling-NRBG Construction
	9.4.1 Instantiation of the DRBG used by the Oversampling NRBG
	9.4.2 Oversampling-NRBG Generation
	9.4.3 Direct DRBG Access

	10 Additional Constructions
	10.1 Constructions for Using a DRBG as a Randomness Source
	10.1.1 The Requested Security Strength Does Not Exceed the Strength of the Source DRBG
	10.1.2 Accessing a Source DRBG with Prediction Resistance to Obtain any Security Strength

	10.2 Construction for Using an NRBG as a Randomness Source
	10.3 Constructions for Using an Entropy Source as a Randomness Sources
	10.3.1 The Get_Entropy Call
	10.3.1.1 Condensing Entropy Bits during Entropy Collection
	10.3.1.2 Condensing After Entropy Collection

	10.3.2 External Conditioning Functions
	10.3.2.1 Using an External Conditioning Function
	10.3.2.2 Keys Used for External Conditioning

	10.3.3 Get_entropy_input Constructions for Accessing Entropy Sources
	10.3.3.1 Construction When a Conditioning Function is not Used
	10.3.3.2 Construction When a Vetted Conditioning Function is Used and Full Entropy is Not Required)
	10.3.3.3 Construction When a Vetted Conditioning Function is Used to Obtain Full Entropy Bitstrings

	10.4 General Construction Using a DRBG with Prediction Resistance to Obtain Full-Entropy Output Upon Request

	11 Combining RBGs
	11.1 Discussion
	11.2 Construction to Combine RBGs
	11.2.1 Overview
	11.2.2 Combined RBG Instantiation
	11.2.3 Combined RBG Reseeding

	12 Testing
	12.1 Health Testing
	12.1.1 Testing RBG Components
	12.1.2 Known-Answer Testing for SP 800-90C Components
	12.1.3 Handling Failure

	12.2 Implementation Validation

	Appendix A: Diagrams of Basic RBG Configurations
	A.1 Example Using an XOR Construction
	A.1.1 NRBG Instantiation
	A.1.2 NRBG Generation
	A.1.3 Direct DRBG Generation
	A.1.4 DRBG Reseeding

	 A.2 Example Using an Oversampling Construction
	A.2.1 NRBG Instantiation
	A.2.2 NRBG Generation
	A.2.3 Direct DRBG Generation
	A.2.4 Direct DRBG Reseeding

	A.3 Example Using a DRBG without a Randomness Source
	A.3.1 DRBG Instantiation
	A.3.2 DRBG Generation
	A.3.3 DRBG Reseeding

	A.4 Example Using a DRBG with a Live Entropy Source
	A.4.1 DRBG Instantiation
	A.4.2 DRBG Generation
	A.4.3 DRBG Reseeding

	A.5 Example Using a Chain of DRBGs with a Live Entropy Source
	A.5.1 DRBG Instantiation
	A.5.1.1 Instantiation of the Initial DRBG in the Chain (Source DRBG A)
	A.5.1.2 Instantiation of DRBG B
	A.5.1.3 Instantiation of DRBG C

	A.5.2 DRBG Generation
	A.5.2.1 Generate Requests to DRBG A from a Subsequent DRBG in a Chain
	A.5.2.2 Generate Requests to a DRBG by a Consuming Application

	A.5.3 DRBG Reseeding
	A.5.3.1 Reseeding of DRBG A (the Initial DRBG of the Chain)
	A.5.3.2 Reseeding of a Subsequent DRBG in a Chain

	Appendix B: References

